Thanks to visit codestin.com
Credit goes to doxygen.postgresql.org

PostgreSQL Source Code git master
plancat.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * plancat.c
4 * routines for accessing the system catalogs
5 *
6 *
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 *
11 * IDENTIFICATION
12 * src/backend/optimizer/util/plancat.c
13 *
14 *-------------------------------------------------------------------------
15 */
16#include "postgres.h"
17
18#include <math.h>
19
20#include "access/genam.h"
21#include "access/htup_details.h"
22#include "access/nbtree.h"
23#include "access/sysattr.h"
24#include "access/table.h"
25#include "access/tableam.h"
26#include "access/transam.h"
27#include "access/xlog.h"
28#include "catalog/catalog.h"
29#include "catalog/heap.h"
30#include "catalog/pg_am.h"
31#include "catalog/pg_proc.h"
34#include "foreign/fdwapi.h"
35#include "miscadmin.h"
36#include "nodes/makefuncs.h"
37#include "nodes/nodeFuncs.h"
38#include "nodes/supportnodes.h"
39#include "optimizer/cost.h"
40#include "optimizer/optimizer.h"
41#include "optimizer/plancat.h"
43#include "parser/parsetree.h"
48#include "storage/bufmgr.h"
49#include "tcop/tcopprot.h"
50#include "utils/builtins.h"
51#include "utils/lsyscache.h"
52#include "utils/partcache.h"
53#include "utils/rel.h"
54#include "utils/snapmgr.h"
55#include "utils/syscache.h"
56
57/* GUC parameter */
59
60/* Hook for plugins to get control in get_relation_info() */
62
63typedef struct NotnullHashEntry
64{
65 Oid relid; /* OID of the relation */
66 Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
68
69
71 Relation relation, bool inhparent);
73 List *idxExprs);
75 Oid relationObjectId, RelOptInfo *rel,
76 bool include_noinherit,
77 bool include_notnull,
78 bool include_partition);
80 Relation heapRelation);
82 Relation relation);
84 Relation relation);
86 Relation relation);
87static void set_baserel_partition_key_exprs(Relation relation,
88 RelOptInfo *rel);
90 RelOptInfo *rel);
91
92
93/*
94 * get_relation_info -
95 * Retrieves catalog information for a given relation.
96 *
97 * Given the Oid of the relation, return the following info into fields
98 * of the RelOptInfo struct:
99 *
100 * min_attr lowest valid AttrNumber
101 * max_attr highest valid AttrNumber
102 * indexlist list of IndexOptInfos for relation's indexes
103 * statlist list of StatisticExtInfo for relation's statistic objects
104 * serverid if it's a foreign table, the server OID
105 * fdwroutine if it's a foreign table, the FDW function pointers
106 * pages number of pages
107 * tuples number of tuples
108 * rel_parallel_workers user-defined number of parallel workers
109 *
110 * Also, add information about the relation's foreign keys to root->fkey_list.
111 *
112 * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 * cases these are left as zeroes, but sometimes we need to compute attr
114 * widths here, and we may as well cache the results for costsize.c.
115 *
116 * If inhparent is true, all we need to do is set up the attr arrays:
117 * the RelOptInfo actually represents the appendrel formed by an inheritance
118 * tree, and so the parent rel's physical size and index information isn't
119 * important for it, however, for partitioned tables, we do populate the
120 * indexlist as the planner uses unique indexes as unique proofs for certain
121 * optimizations.
122 */
123void
124get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
125 RelOptInfo *rel)
126{
127 Index varno = rel->relid;
128 Relation relation;
129 bool hasindex;
130 List *indexinfos = NIL;
131
132 /*
133 * We need not lock the relation since it was already locked, either by
134 * the rewriter or when expand_inherited_rtentry() added it to the query's
135 * rangetable.
136 */
137 relation = table_open(relationObjectId, NoLock);
138
139 /*
140 * Relations without a table AM can be used in a query only if they are of
141 * special-cased relkinds. This check prevents us from crashing later if,
142 * for example, a view's ON SELECT rule has gone missing. Note that
143 * table_open() already rejected indexes and composite types; spell the
144 * error the same way it does.
145 */
146 if (!relation->rd_tableam)
147 {
148 if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
151 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
152 errmsg("cannot open relation \"%s\"",
153 RelationGetRelationName(relation)),
154 errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 }
156
157 /* Temporary and unlogged relations are inaccessible during recovery. */
158 if (!RelationIsPermanent(relation) && RecoveryInProgress())
160 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
161 errmsg("cannot access temporary or unlogged relations during recovery")));
162
165 rel->reltablespace = RelationGetForm(relation)->reltablespace;
166
167 Assert(rel->max_attr >= rel->min_attr);
168 rel->attr_needed = (Relids *)
169 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 rel->attr_widths = (int32 *)
171 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172
173 /*
174 * Record which columns are defined as NOT NULL. We leave this
175 * unpopulated for non-partitioned inheritance parent relations as it's
176 * ambiguous as to what it means. Some child tables may have a NOT NULL
177 * constraint for a column while others may not. We could work harder and
178 * build a unioned set of all child relations notnullattnums, but there's
179 * currently no need. The RelOptInfo corresponding to the !inh
180 * RangeTblEntry does get populated.
181 */
182 if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
183 rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
184
185 /*
186 * Estimate relation size --- unless it's an inheritance parent, in which
187 * case the size we want is not the rel's own size but the size of its
188 * inheritance tree. That will be computed in set_append_rel_size().
189 */
190 if (!inhparent)
191 estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 &rel->pages, &rel->tuples, &rel->allvisfrac);
193
194 /* Retrieve the parallel_workers reloption, or -1 if not set. */
196
197 /*
198 * Make list of indexes. Ignore indexes on system catalogs if told to.
199 * Don't bother with indexes from traditional inheritance parents. For
200 * partitioned tables, we need a list of at least unique indexes as these
201 * serve as unique proofs for certain planner optimizations. However,
202 * let's not discriminate here and just record all partitioned indexes
203 * whether they're unique indexes or not.
204 */
205 if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 hasindex = false;
208 else
209 hasindex = relation->rd_rel->relhasindex;
210
211 if (hasindex)
212 {
213 List *indexoidlist;
214 LOCKMODE lmode;
215 ListCell *l;
216
217 indexoidlist = RelationGetIndexList(relation);
218
219 /*
220 * For each index, we get the same type of lock that the executor will
221 * need, and do not release it. This saves a couple of trips to the
222 * shared lock manager while not creating any real loss of
223 * concurrency, because no schema changes could be happening on the
224 * index while we hold lock on the parent rel, and no lock type used
225 * for queries blocks any other kind of index operation.
226 */
227 lmode = root->simple_rte_array[varno]->rellockmode;
228
229 foreach(l, indexoidlist)
230 {
231 Oid indexoid = lfirst_oid(l);
232 Relation indexRelation;
234 IndexAmRoutine *amroutine = NULL;
235 IndexOptInfo *info;
236 int ncolumns,
237 nkeycolumns;
238 int i;
239
240 /*
241 * Extract info from the relation descriptor for the index.
242 */
243 indexRelation = index_open(indexoid, lmode);
244 index = indexRelation->rd_index;
245
246 /*
247 * Ignore invalid indexes, since they can't safely be used for
248 * queries. Note that this is OK because the data structure we
249 * are constructing is only used by the planner --- the executor
250 * still needs to insert into "invalid" indexes, if they're marked
251 * indisready.
252 */
253 if (!index->indisvalid)
254 {
255 index_close(indexRelation, NoLock);
256 continue;
257 }
258
259 /*
260 * If the index is valid, but cannot yet be used, ignore it; but
261 * mark the plan we are generating as transient. See
262 * src/backend/access/heap/README.HOT for discussion.
263 */
264 if (index->indcheckxmin &&
267 {
268 root->glob->transientPlan = true;
269 index_close(indexRelation, NoLock);
270 continue;
271 }
272
273 info = makeNode(IndexOptInfo);
274
275 info->indexoid = index->indexrelid;
276 info->reltablespace =
277 RelationGetForm(indexRelation)->reltablespace;
278 info->rel = rel;
279 info->ncolumns = ncolumns = index->indnatts;
280 info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281
282 info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
283 info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
284 info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
285 info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
286 info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
287
288 for (i = 0; i < ncolumns; i++)
289 {
290 info->indexkeys[i] = index->indkey.values[i];
291 info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 }
293
294 for (i = 0; i < nkeycolumns; i++)
295 {
296 info->opfamily[i] = indexRelation->rd_opfamily[i];
297 info->opcintype[i] = indexRelation->rd_opcintype[i];
298 info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 }
300
301 info->relam = indexRelation->rd_rel->relam;
302
303 /*
304 * We don't have an AM for partitioned indexes, so we'll just
305 * NULLify the AM related fields for those.
306 */
307 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 {
309 /* We copy just the fields we need, not all of rd_indam */
310 amroutine = indexRelation->rd_indam;
311 info->amcanorderbyop = amroutine->amcanorderbyop;
312 info->amoptionalkey = amroutine->amoptionalkey;
313 info->amsearcharray = amroutine->amsearcharray;
314 info->amsearchnulls = amroutine->amsearchnulls;
315 info->amcanparallel = amroutine->amcanparallel;
316 info->amhasgettuple = (amroutine->amgettuple != NULL);
317 info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
318 relation->rd_tableam->scan_bitmap_next_tuple != NULL;
319 info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 amroutine->amrestrpos != NULL);
321 info->amcostestimate = amroutine->amcostestimate;
322 Assert(info->amcostestimate != NULL);
323
324 /* Fetch index opclass options */
325 info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326
327 /*
328 * Fetch the ordering information for the index, if any.
329 */
330 if (info->relam == BTREE_AM_OID)
331 {
332 /*
333 * If it's a btree index, we can use its opfamily OIDs
334 * directly as the sort ordering opfamily OIDs.
335 */
336 Assert(amroutine->amcanorder);
337
338 info->sortopfamily = info->opfamily;
339 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
340 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
341
342 for (i = 0; i < nkeycolumns; i++)
343 {
344 int16 opt = indexRelation->rd_indoption[i];
345
346 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 }
349 }
350 else if (amroutine->amcanorder)
351 {
352 /*
353 * Otherwise, identify the corresponding btree opfamilies
354 * by trying to map this index's "<" operators into btree.
355 * Since "<" uniquely defines the behavior of a sort
356 * order, this is a sufficient test.
357 *
358 * XXX This method is rather slow and complicated. It'd
359 * be better to have a way to explicitly declare the
360 * corresponding btree opfamily for each opfamily of the
361 * other index type.
362 */
363 info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
364 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
365 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
366
367 for (i = 0; i < nkeycolumns; i++)
368 {
369 int16 opt = indexRelation->rd_indoption[i];
370 Oid ltopr;
371 Oid opfamily;
372 Oid opcintype;
373 CompareType cmptype;
374
375 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377
378 ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 info->opcintype[i],
380 info->opcintype[i],
381 COMPARE_LT);
382 if (OidIsValid(ltopr) &&
384 &opfamily,
385 &opcintype,
386 &cmptype) &&
387 opcintype == info->opcintype[i] &&
388 cmptype == COMPARE_LT)
389 {
390 /* Successful mapping */
391 info->sortopfamily[i] = opfamily;
392 }
393 else
394 {
395 /* Fail ... quietly treat index as unordered */
396 info->sortopfamily = NULL;
397 info->reverse_sort = NULL;
398 info->nulls_first = NULL;
399 break;
400 }
401 }
402 }
403 else
404 {
405 info->sortopfamily = NULL;
406 info->reverse_sort = NULL;
407 info->nulls_first = NULL;
408 }
409 }
410 else
411 {
412 info->amcanorderbyop = false;
413 info->amoptionalkey = false;
414 info->amsearcharray = false;
415 info->amsearchnulls = false;
416 info->amcanparallel = false;
417 info->amhasgettuple = false;
418 info->amhasgetbitmap = false;
419 info->amcanmarkpos = false;
420 info->amcostestimate = NULL;
421
422 info->sortopfamily = NULL;
423 info->reverse_sort = NULL;
424 info->nulls_first = NULL;
425 }
426
427 /*
428 * Fetch the index expressions and predicate, if any. We must
429 * modify the copies we obtain from the relcache to have the
430 * correct varno for the parent relation, so that they match up
431 * correctly against qual clauses.
432 */
433 info->indexprs = RelationGetIndexExpressions(indexRelation);
434 info->indpred = RelationGetIndexPredicate(indexRelation);
435 if (info->indexprs && varno != 1)
436 ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
437 if (info->indpred && varno != 1)
438 ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
439
440 /* Build targetlist using the completed indexprs data */
441 info->indextlist = build_index_tlist(root, info, relation);
442
443 info->indrestrictinfo = NIL; /* set later, in indxpath.c */
444 info->predOK = false; /* set later, in indxpath.c */
445 info->unique = index->indisunique;
446 info->nullsnotdistinct = index->indnullsnotdistinct;
447 info->immediate = index->indimmediate;
448 info->hypothetical = false;
449
450 /*
451 * Estimate the index size. If it's not a partial index, we lock
452 * the number-of-tuples estimate to equal the parent table; if it
453 * is partial then we have to use the same methods as we would for
454 * a table, except we can be sure that the index is not larger
455 * than the table. We must ignore partitioned indexes here as
456 * there are not physical indexes.
457 */
458 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
459 {
460 if (info->indpred == NIL)
461 {
462 info->pages = RelationGetNumberOfBlocks(indexRelation);
463 info->tuples = rel->tuples;
464 }
465 else
466 {
467 double allvisfrac; /* dummy */
468
469 estimate_rel_size(indexRelation, NULL,
470 &info->pages, &info->tuples, &allvisfrac);
471 if (info->tuples > rel->tuples)
472 info->tuples = rel->tuples;
473 }
474
475 /*
476 * Get tree height while we have the index open
477 */
478 if (amroutine->amgettreeheight)
479 {
480 info->tree_height = amroutine->amgettreeheight(indexRelation);
481 }
482 else
483 {
484 /* For other index types, just set it to "unknown" for now */
485 info->tree_height = -1;
486 }
487 }
488 else
489 {
490 /* Zero these out for partitioned indexes */
491 info->pages = 0;
492 info->tuples = 0.0;
493 info->tree_height = -1;
494 }
495
496 index_close(indexRelation, NoLock);
497
498 /*
499 * We've historically used lcons() here. It'd make more sense to
500 * use lappend(), but that causes the planner to change behavior
501 * in cases where two indexes seem equally attractive. For now,
502 * stick with lcons() --- few tables should have so many indexes
503 * that the O(N^2) behavior of lcons() is really a problem.
504 */
505 indexinfos = lcons(info, indexinfos);
506 }
507
508 list_free(indexoidlist);
509 }
510
511 rel->indexlist = indexinfos;
512
513 rel->statlist = get_relation_statistics(root, rel, relation);
514
515 /* Grab foreign-table info using the relcache, while we have it */
516 if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
517 {
518 /* Check if the access to foreign tables is restricted */
520 {
521 /* there must not be built-in foreign tables */
523
525 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
526 errmsg("access to non-system foreign table is restricted")));
527 }
528
530 rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
531 }
532 else
533 {
534 rel->serverid = InvalidOid;
535 rel->fdwroutine = NULL;
536 }
537
538 /* Collect info about relation's foreign keys, if relevant */
539 get_relation_foreign_keys(root, rel, relation, inhparent);
540
541 /* Collect info about functions implemented by the rel's table AM. */
542 if (relation->rd_tableam &&
543 relation->rd_tableam->scan_set_tidrange != NULL &&
544 relation->rd_tableam->scan_getnextslot_tidrange != NULL)
546
547 /*
548 * Collect info about relation's partitioning scheme, if any. Only
549 * inheritance parents may be partitioned.
550 */
551 if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
552 set_relation_partition_info(root, rel, relation);
553
554 table_close(relation, NoLock);
555
556 /*
557 * Allow a plugin to editorialize on the info we obtained from the
558 * catalogs. Actions might include altering the assumed relation size,
559 * removing an index, or adding a hypothetical index to the indexlist.
560 */
562 (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
563}
564
565/*
566 * get_relation_foreign_keys -
567 * Retrieves foreign key information for a given relation.
568 *
569 * ForeignKeyOptInfos for relevant foreign keys are created and added to
570 * root->fkey_list. We do this now while we have the relcache entry open.
571 * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
572 * until all RelOptInfos have been built, but the cost of re-opening the
573 * relcache entries would probably exceed any savings.
574 */
575static void
577 Relation relation, bool inhparent)
578{
579 List *rtable = root->parse->rtable;
580 List *cachedfkeys;
581 ListCell *lc;
582
583 /*
584 * If it's not a baserel, we don't care about its FKs. Also, if the query
585 * references only a single relation, we can skip the lookup since no FKs
586 * could satisfy the requirements below.
587 */
588 if (rel->reloptkind != RELOPT_BASEREL ||
589 list_length(rtable) < 2)
590 return;
591
592 /*
593 * If it's the parent of an inheritance tree, ignore its FKs. We could
594 * make useful FK-based deductions if we found that all members of the
595 * inheritance tree have equivalent FK constraints, but detecting that
596 * would require code that hasn't been written.
597 */
598 if (inhparent)
599 return;
600
601 /*
602 * Extract data about relation's FKs from the relcache. Note that this
603 * list belongs to the relcache and might disappear in a cache flush, so
604 * we must not do any further catalog access within this function.
605 */
606 cachedfkeys = RelationGetFKeyList(relation);
607
608 /*
609 * Figure out which FKs are of interest for this query, and create
610 * ForeignKeyOptInfos for them. We want only FKs that reference some
611 * other RTE of the current query. In queries containing self-joins,
612 * there might be more than one other RTE for a referenced table, and we
613 * should make a ForeignKeyOptInfo for each occurrence.
614 *
615 * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
616 * too hard to identify those here, so we might end up making some useless
617 * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
618 * them again.
619 */
620 foreach(lc, cachedfkeys)
621 {
623 Index rti;
624 ListCell *lc2;
625
626 /* conrelid should always be that of the table we're considering */
627 Assert(cachedfk->conrelid == RelationGetRelid(relation));
628
629 /* skip constraints currently not enforced */
630 if (!cachedfk->conenforced)
631 continue;
632
633 /* Scan to find other RTEs matching confrelid */
634 rti = 0;
635 foreach(lc2, rtable)
636 {
637 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
638 ForeignKeyOptInfo *info;
639
640 rti++;
641 /* Ignore if not the correct table */
642 if (rte->rtekind != RTE_RELATION ||
643 rte->relid != cachedfk->confrelid)
644 continue;
645 /* Ignore if it's an inheritance parent; doesn't really match */
646 if (rte->inh)
647 continue;
648 /* Ignore self-referential FKs; we only care about joins */
649 if (rti == rel->relid)
650 continue;
651
652 /* OK, let's make an entry */
654 info->con_relid = rel->relid;
655 info->ref_relid = rti;
656 info->nkeys = cachedfk->nkeys;
657 memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
658 memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
659 memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
660 /* zero out fields to be filled by match_foreign_keys_to_quals */
661 info->nmatched_ec = 0;
662 info->nconst_ec = 0;
663 info->nmatched_rcols = 0;
664 info->nmatched_ri = 0;
665 memset(info->eclass, 0, sizeof(info->eclass));
666 memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
667 memset(info->rinfos, 0, sizeof(info->rinfos));
668
669 root->fkey_list = lappend(root->fkey_list, info);
670 }
671 }
672}
673
674/*
675 * get_relation_notnullatts -
676 * Retrieves column not-null constraint information for a given relation.
677 *
678 * We do this while we have the relcache entry open, and store the column
679 * not-null constraint information in a hash table based on the relation OID.
680 */
681void
683{
684 Oid relid = RelationGetRelid(relation);
685 NotnullHashEntry *hentry;
686 bool found;
687 Bitmapset *notnullattnums = NULL;
688
689 /* bail out if the relation has no not-null constraints */
690 if (relation->rd_att->constr == NULL ||
691 !relation->rd_att->constr->has_not_null)
692 return;
693
694 /* create the hash table if it hasn't been created yet */
695 if (root->glob->rel_notnullatts_hash == NULL)
696 {
697 HTAB *hashtab;
698 HASHCTL hash_ctl;
699
700 hash_ctl.keysize = sizeof(Oid);
701 hash_ctl.entrysize = sizeof(NotnullHashEntry);
702 hash_ctl.hcxt = CurrentMemoryContext;
703
704 hashtab = hash_create("Relation NOT NULL attnums",
705 64L, /* arbitrary initial size */
706 &hash_ctl,
708
709 root->glob->rel_notnullatts_hash = hashtab;
710 }
711
712 /*
713 * Create a hash entry for this relation OID, if we don't have one
714 * already.
715 */
716 hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
717 &relid,
719 &found);
720
721 /* bail out if a hash entry already exists for this relation OID */
722 if (found)
723 return;
724
725 /* collect the column not-null constraint information for this relation */
726 for (int i = 0; i < relation->rd_att->natts; i++)
727 {
728 CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
729
731
733 {
734 notnullattnums = bms_add_member(notnullattnums, i + 1);
735
736 /*
737 * Per RemoveAttributeById(), dropped columns will have their
738 * attnotnull unset, so we needn't check for dropped columns in
739 * the above condition.
740 */
741 Assert(!attr->attisdropped);
742 }
743 }
744
745 /* ... and initialize the new hash entry */
746 hentry->notnullattnums = notnullattnums;
747}
748
749/*
750 * find_relation_notnullatts -
751 * Searches the hash table and returns the column not-null constraint
752 * information for a given relation.
753 */
754Bitmapset *
756{
757 NotnullHashEntry *hentry;
758 bool found;
759
760 if (root->glob->rel_notnullatts_hash == NULL)
761 return NULL;
762
763 hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
764 &relid,
765 HASH_FIND,
766 &found);
767 if (!found)
768 return NULL;
769
770 return hentry->notnullattnums;
771}
772
773/*
774 * infer_arbiter_indexes -
775 * Determine the unique indexes used to arbitrate speculative insertion.
776 *
777 * Uses user-supplied inference clause expressions and predicate to match a
778 * unique index from those defined and ready on the heap relation (target).
779 * An exact match is required on columns/expressions (although they can appear
780 * in any order). However, the predicate given by the user need only restrict
781 * insertion to a subset of some part of the table covered by some particular
782 * unique index (in particular, a partial unique index) in order to be
783 * inferred.
784 *
785 * The implementation does not consider which B-Tree operator class any
786 * particular available unique index attribute uses, unless one was specified
787 * in the inference specification. The same is true of collations. In
788 * particular, there is no system dependency on the default operator class for
789 * the purposes of inference. If no opclass (or collation) is specified, then
790 * all matching indexes (that may or may not match the default in terms of
791 * each attribute opclass/collation) are used for inference.
792 */
793List *
795{
796 OnConflictExpr *onconflict = root->parse->onConflict;
797
798 /* Iteration state */
799 Index varno;
800 RangeTblEntry *rte;
801 Relation relation;
802 Oid indexOidFromConstraint = InvalidOid;
803 List *indexList;
804 ListCell *l;
805
806 /* Normalized inference attributes and inference expressions: */
807 Bitmapset *inferAttrs = NULL;
808 List *inferElems = NIL;
809
810 /* Results */
811 List *results = NIL;
812
813 /*
814 * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
815 * specification or named constraint. ON CONFLICT DO UPDATE statements
816 * must always provide one or the other (but parser ought to have caught
817 * that already).
818 */
819 if (onconflict->arbiterElems == NIL &&
820 onconflict->constraint == InvalidOid)
821 return NIL;
822
823 /*
824 * We need not lock the relation since it was already locked, either by
825 * the rewriter or when expand_inherited_rtentry() added it to the query's
826 * rangetable.
827 */
828 varno = root->parse->resultRelation;
829 rte = rt_fetch(varno, root->parse->rtable);
830
831 relation = table_open(rte->relid, NoLock);
832
833 /*
834 * Build normalized/BMS representation of plain indexed attributes, as
835 * well as a separate list of expression items. This simplifies matching
836 * the cataloged definition of indexes.
837 */
838 foreach(l, onconflict->arbiterElems)
839 {
840 InferenceElem *elem = (InferenceElem *) lfirst(l);
841 Var *var;
842 int attno;
843
844 if (!IsA(elem->expr, Var))
845 {
846 /* If not a plain Var, just shove it in inferElems for now */
847 inferElems = lappend(inferElems, elem->expr);
848 continue;
849 }
850
851 var = (Var *) elem->expr;
852 attno = var->varattno;
853
854 if (attno == 0)
856 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
857 errmsg("whole row unique index inference specifications are not supported")));
858
859 inferAttrs = bms_add_member(inferAttrs,
861 }
862
863 /*
864 * Lookup named constraint's index. This is not immediately returned
865 * because some additional sanity checks are required.
866 */
867 if (onconflict->constraint != InvalidOid)
868 {
869 indexOidFromConstraint = get_constraint_index(onconflict->constraint);
870
871 if (indexOidFromConstraint == InvalidOid)
873 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
874 errmsg("constraint in ON CONFLICT clause has no associated index")));
875 }
876
877 /*
878 * Using that representation, iterate through the list of indexes on the
879 * target relation to try and find a match
880 */
881 indexList = RelationGetIndexList(relation);
882
883 foreach(l, indexList)
884 {
885 Oid indexoid = lfirst_oid(l);
886 Relation idxRel;
887 Form_pg_index idxForm;
888 Bitmapset *indexedAttrs;
889 List *idxExprs;
890 List *predExprs;
891 AttrNumber natt;
892 ListCell *el;
893
894 /*
895 * Extract info from the relation descriptor for the index. Obtain
896 * the same lock type that the executor will ultimately use.
897 *
898 * Let executor complain about !indimmediate case directly, because
899 * enforcement needs to occur there anyway when an inference clause is
900 * omitted.
901 */
902 idxRel = index_open(indexoid, rte->rellockmode);
903 idxForm = idxRel->rd_index;
904
905 if (!idxForm->indisvalid)
906 goto next;
907
908 /*
909 * Note that we do not perform a check against indcheckxmin (like e.g.
910 * get_relation_info()) here to eliminate candidates, because
911 * uniqueness checking only cares about the most recently committed
912 * tuple versions.
913 */
914
915 /*
916 * Look for match on "ON constraint_name" variant, which may not be
917 * unique constraint. This can only be a constraint name.
918 */
919 if (indexOidFromConstraint == idxForm->indexrelid)
920 {
921 if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
923 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
924 errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
925
926 results = lappend_oid(results, idxForm->indexrelid);
927 list_free(indexList);
928 index_close(idxRel, NoLock);
929 table_close(relation, NoLock);
930 return results;
931 }
932 else if (indexOidFromConstraint != InvalidOid)
933 {
934 /* No point in further work for index in named constraint case */
935 goto next;
936 }
937
938 /*
939 * Only considering conventional inference at this point (not named
940 * constraints), so index under consideration can be immediately
941 * skipped if it's not unique
942 */
943 if (!idxForm->indisunique)
944 goto next;
945
946 /*
947 * So-called unique constraints with WITHOUT OVERLAPS are really
948 * exclusion constraints, so skip those too.
949 */
950 if (idxForm->indisexclusion)
951 goto next;
952
953 /* Build BMS representation of plain (non expression) index attrs */
954 indexedAttrs = NULL;
955 for (natt = 0; natt < idxForm->indnkeyatts; natt++)
956 {
957 int attno = idxRel->rd_index->indkey.values[natt];
958
959 if (attno != 0)
960 indexedAttrs = bms_add_member(indexedAttrs,
962 }
963
964 /* Non-expression attributes (if any) must match */
965 if (!bms_equal(indexedAttrs, inferAttrs))
966 goto next;
967
968 /* Expression attributes (if any) must match */
969 idxExprs = RelationGetIndexExpressions(idxRel);
970 if (idxExprs && varno != 1)
971 ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
972
973 foreach(el, onconflict->arbiterElems)
974 {
975 InferenceElem *elem = (InferenceElem *) lfirst(el);
976
977 /*
978 * Ensure that collation/opclass aspects of inference expression
979 * element match. Even though this loop is primarily concerned
980 * with matching expressions, it is a convenient point to check
981 * this for both expressions and ordinary (non-expression)
982 * attributes appearing as inference elements.
983 */
984 if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
985 goto next;
986
987 /*
988 * Plain Vars don't factor into count of expression elements, and
989 * the question of whether or not they satisfy the index
990 * definition has already been considered (they must).
991 */
992 if (IsA(elem->expr, Var))
993 continue;
994
995 /*
996 * Might as well avoid redundant check in the rare cases where
997 * infer_collation_opclass_match() is required to do real work.
998 * Otherwise, check that element expression appears in cataloged
999 * index definition.
1000 */
1001 if (elem->infercollid != InvalidOid ||
1002 elem->inferopclass != InvalidOid ||
1003 list_member(idxExprs, elem->expr))
1004 continue;
1005
1006 goto next;
1007 }
1008
1009 /*
1010 * Now that all inference elements were matched, ensure that the
1011 * expression elements from inference clause are not missing any
1012 * cataloged expressions. This does the right thing when unique
1013 * indexes redundantly repeat the same attribute, or if attributes
1014 * redundantly appear multiple times within an inference clause.
1015 */
1016 if (list_difference(idxExprs, inferElems) != NIL)
1017 goto next;
1018
1019 /*
1020 * If it's a partial index, its predicate must be implied by the ON
1021 * CONFLICT's WHERE clause.
1022 */
1023 predExprs = RelationGetIndexPredicate(idxRel);
1024 if (predExprs && varno != 1)
1025 ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1026
1027 if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
1028 goto next;
1029
1030 results = lappend_oid(results, idxForm->indexrelid);
1031next:
1032 index_close(idxRel, NoLock);
1033 }
1034
1035 list_free(indexList);
1036 table_close(relation, NoLock);
1037
1038 if (results == NIL)
1039 ereport(ERROR,
1040 (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1041 errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1042
1043 return results;
1044}
1045
1046/*
1047 * infer_collation_opclass_match - ensure infer element opclass/collation match
1048 *
1049 * Given unique index inference element from inference specification, if
1050 * collation was specified, or if opclass was specified, verify that there is
1051 * at least one matching indexed attribute (occasionally, there may be more).
1052 * Skip this in the common case where inference specification does not include
1053 * collation or opclass (instead matching everything, regardless of cataloged
1054 * collation/opclass of indexed attribute).
1055 *
1056 * At least historically, Postgres has not offered collations or opclasses
1057 * with alternative-to-default notions of equality, so these additional
1058 * criteria should only be required infrequently.
1059 *
1060 * Don't give up immediately when an inference element matches some attribute
1061 * cataloged as indexed but not matching additional opclass/collation
1062 * criteria. This is done so that the implementation is as forgiving as
1063 * possible of redundancy within cataloged index attributes (or, less
1064 * usefully, within inference specification elements). If collations actually
1065 * differ between apparently redundantly indexed attributes (redundant within
1066 * or across indexes), then there really is no redundancy as such.
1067 *
1068 * Note that if an inference element specifies an opclass and a collation at
1069 * once, both must match in at least one particular attribute within index
1070 * catalog definition in order for that inference element to be considered
1071 * inferred/satisfied.
1072 */
1073static bool
1075 List *idxExprs)
1076{
1077 AttrNumber natt;
1078 Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1079 Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1080 int nplain = 0; /* # plain attrs observed */
1081
1082 /*
1083 * If inference specification element lacks collation/opclass, then no
1084 * need to check for exact match.
1085 */
1086 if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1087 return true;
1088
1089 /*
1090 * Lookup opfamily and input type, for matching indexes
1091 */
1092 if (elem->inferopclass)
1093 {
1094 inferopfamily = get_opclass_family(elem->inferopclass);
1095 inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1096 }
1097
1098 for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1099 {
1100 Oid opfamily = idxRel->rd_opfamily[natt - 1];
1101 Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1102 Oid collation = idxRel->rd_indcollation[natt - 1];
1103 int attno = idxRel->rd_index->indkey.values[natt - 1];
1104
1105 if (attno != 0)
1106 nplain++;
1107
1108 if (elem->inferopclass != InvalidOid &&
1109 (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1110 {
1111 /* Attribute needed to match opclass, but didn't */
1112 continue;
1113 }
1114
1115 if (elem->infercollid != InvalidOid &&
1116 elem->infercollid != collation)
1117 {
1118 /* Attribute needed to match collation, but didn't */
1119 continue;
1120 }
1121
1122 /* If one matching index att found, good enough -- return true */
1123 if (IsA(elem->expr, Var))
1124 {
1125 if (((Var *) elem->expr)->varattno == attno)
1126 return true;
1127 }
1128 else if (attno == 0)
1129 {
1130 Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1131
1132 /*
1133 * Note that unlike routines like match_index_to_operand() we
1134 * don't need to care about RelabelType. Neither the index
1135 * definition nor the inference clause should contain them.
1136 */
1137 if (equal(elem->expr, nattExpr))
1138 return true;
1139 }
1140 }
1141
1142 return false;
1143}
1144
1145/*
1146 * estimate_rel_size - estimate # pages and # tuples in a table or index
1147 *
1148 * We also estimate the fraction of the pages that are marked all-visible in
1149 * the visibility map, for use in estimation of index-only scans.
1150 *
1151 * If attr_widths isn't NULL, it points to the zero-index entry of the
1152 * relation's attr_widths[] cache; we fill this in if we have need to compute
1153 * the attribute widths for estimation purposes.
1154 */
1155void
1157 BlockNumber *pages, double *tuples, double *allvisfrac)
1158{
1159 BlockNumber curpages;
1160 BlockNumber relpages;
1161 double reltuples;
1162 BlockNumber relallvisible;
1163 double density;
1164
1165 if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1166 {
1167 table_relation_estimate_size(rel, attr_widths, pages, tuples,
1168 allvisfrac);
1169 }
1170 else if (rel->rd_rel->relkind == RELKIND_INDEX)
1171 {
1172 /*
1173 * XXX: It'd probably be good to move this into a callback, individual
1174 * index types e.g. know if they have a metapage.
1175 */
1176
1177 /* it has storage, ok to call the smgr */
1178 curpages = RelationGetNumberOfBlocks(rel);
1179
1180 /* report estimated # pages */
1181 *pages = curpages;
1182 /* quick exit if rel is clearly empty */
1183 if (curpages == 0)
1184 {
1185 *tuples = 0;
1186 *allvisfrac = 0;
1187 return;
1188 }
1189
1190 /* coerce values in pg_class to more desirable types */
1191 relpages = (BlockNumber) rel->rd_rel->relpages;
1192 reltuples = (double) rel->rd_rel->reltuples;
1193 relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1194
1195 /*
1196 * Discount the metapage while estimating the number of tuples. This
1197 * is a kluge because it assumes more than it ought to about index
1198 * structure. Currently it's OK for btree, hash, and GIN indexes but
1199 * suspect for GiST indexes.
1200 */
1201 if (relpages > 0)
1202 {
1203 curpages--;
1204 relpages--;
1205 }
1206
1207 /* estimate number of tuples from previous tuple density */
1208 if (reltuples >= 0 && relpages > 0)
1209 density = reltuples / (double) relpages;
1210 else
1211 {
1212 /*
1213 * If we have no data because the relation was never vacuumed,
1214 * estimate tuple width from attribute datatypes. We assume here
1215 * that the pages are completely full, which is OK for tables
1216 * (since they've presumably not been VACUUMed yet) but is
1217 * probably an overestimate for indexes. Fortunately
1218 * get_relation_info() can clamp the overestimate to the parent
1219 * table's size.
1220 *
1221 * Note: this code intentionally disregards alignment
1222 * considerations, because (a) that would be gilding the lily
1223 * considering how crude the estimate is, and (b) it creates
1224 * platform dependencies in the default plans which are kind of a
1225 * headache for regression testing.
1226 *
1227 * XXX: Should this logic be more index specific?
1228 */
1229 int32 tuple_width;
1230
1231 tuple_width = get_rel_data_width(rel, attr_widths);
1232 tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1233 tuple_width += sizeof(ItemIdData);
1234 /* note: integer division is intentional here */
1235 density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1236 }
1237 *tuples = rint(density * (double) curpages);
1238
1239 /*
1240 * We use relallvisible as-is, rather than scaling it up like we do
1241 * for the pages and tuples counts, on the theory that any pages added
1242 * since the last VACUUM are most likely not marked all-visible. But
1243 * costsize.c wants it converted to a fraction.
1244 */
1245 if (relallvisible == 0 || curpages <= 0)
1246 *allvisfrac = 0;
1247 else if ((double) relallvisible >= curpages)
1248 *allvisfrac = 1;
1249 else
1250 *allvisfrac = (double) relallvisible / curpages;
1251 }
1252 else
1253 {
1254 /*
1255 * Just use whatever's in pg_class. This covers foreign tables,
1256 * sequences, and also relkinds without storage (shouldn't get here?);
1257 * see initializations in AddNewRelationTuple(). Note that FDW must
1258 * cope if reltuples is -1!
1259 */
1260 *pages = rel->rd_rel->relpages;
1261 *tuples = rel->rd_rel->reltuples;
1262 *allvisfrac = 0;
1263 }
1264}
1265
1266
1267/*
1268 * get_rel_data_width
1269 *
1270 * Estimate the average width of (the data part of) the relation's tuples.
1271 *
1272 * If attr_widths isn't NULL, it points to the zero-index entry of the
1273 * relation's attr_widths[] cache; use and update that cache as appropriate.
1274 *
1275 * Currently we ignore dropped columns. Ideally those should be included
1276 * in the result, but we haven't got any way to get info about them; and
1277 * since they might be mostly NULLs, treating them as zero-width is not
1278 * necessarily the wrong thing anyway.
1279 */
1280int32
1282{
1283 int64 tuple_width = 0;
1284 int i;
1285
1286 for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1287 {
1288 Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1289 int32 item_width;
1290
1291 if (att->attisdropped)
1292 continue;
1293
1294 /* use previously cached data, if any */
1295 if (attr_widths != NULL && attr_widths[i] > 0)
1296 {
1297 tuple_width += attr_widths[i];
1298 continue;
1299 }
1300
1301 /* This should match set_rel_width() in costsize.c */
1302 item_width = get_attavgwidth(RelationGetRelid(rel), i);
1303 if (item_width <= 0)
1304 {
1305 item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1306 Assert(item_width > 0);
1307 }
1308 if (attr_widths != NULL)
1309 attr_widths[i] = item_width;
1310 tuple_width += item_width;
1311 }
1312
1313 return clamp_width_est(tuple_width);
1314}
1315
1316/*
1317 * get_relation_data_width
1318 *
1319 * External API for get_rel_data_width: same behavior except we have to
1320 * open the relcache entry.
1321 */
1322int32
1324{
1325 int32 result;
1326 Relation relation;
1327
1328 /* As above, assume relation is already locked */
1329 relation = table_open(relid, NoLock);
1330
1331 result = get_rel_data_width(relation, attr_widths);
1332
1333 table_close(relation, NoLock);
1334
1335 return result;
1336}
1337
1338
1339/*
1340 * get_relation_constraints
1341 *
1342 * Retrieve the applicable constraint expressions of the given relation.
1343 * Only constraints that have been validated are considered.
1344 *
1345 * Returns a List (possibly empty) of constraint expressions. Each one
1346 * has been canonicalized, and its Vars are changed to have the varno
1347 * indicated by rel->relid. This allows the expressions to be easily
1348 * compared to expressions taken from WHERE.
1349 *
1350 * If include_noinherit is true, it's okay to include constraints that
1351 * are marked NO INHERIT.
1352 *
1353 * If include_notnull is true, "col IS NOT NULL" expressions are generated
1354 * and added to the result for each column that's marked attnotnull.
1355 *
1356 * If include_partition is true, and the relation is a partition,
1357 * also include the partitioning constraints.
1358 *
1359 * Note: at present this is invoked at most once per relation per planner
1360 * run, and in many cases it won't be invoked at all, so there seems no
1361 * point in caching the data in RelOptInfo.
1362 */
1363static List *
1365 Oid relationObjectId, RelOptInfo *rel,
1366 bool include_noinherit,
1367 bool include_notnull,
1368 bool include_partition)
1369{
1370 List *result = NIL;
1371 Index varno = rel->relid;
1372 Relation relation;
1373 TupleConstr *constr;
1374
1375 /*
1376 * We assume the relation has already been safely locked.
1377 */
1378 relation = table_open(relationObjectId, NoLock);
1379
1380 constr = relation->rd_att->constr;
1381 if (constr != NULL)
1382 {
1383 int num_check = constr->num_check;
1384 int i;
1385
1386 for (i = 0; i < num_check; i++)
1387 {
1388 Node *cexpr;
1389
1390 /*
1391 * If this constraint hasn't been fully validated yet, we must
1392 * ignore it here.
1393 */
1394 if (!constr->check[i].ccvalid)
1395 continue;
1396
1397 /*
1398 * NOT ENFORCED constraints are always marked as invalid, which
1399 * should have been ignored.
1400 */
1401 Assert(constr->check[i].ccenforced);
1402
1403 /*
1404 * Also ignore if NO INHERIT and we weren't told that that's safe.
1405 */
1406 if (constr->check[i].ccnoinherit && !include_noinherit)
1407 continue;
1408
1409 cexpr = stringToNode(constr->check[i].ccbin);
1410
1411 /*
1412 * Fix Vars to have the desired varno. This must be done before
1413 * const-simplification because eval_const_expressions reduces
1414 * NullTest for Vars based on varno.
1415 */
1416 if (varno != 1)
1417 ChangeVarNodes(cexpr, 1, varno, 0);
1418
1419 /*
1420 * Run each expression through const-simplification and
1421 * canonicalization. This is not just an optimization, but is
1422 * necessary, because we will be comparing it to
1423 * similarly-processed qual clauses, and may fail to detect valid
1424 * matches without this. This must match the processing done to
1425 * qual clauses in preprocess_expression()! (We can skip the
1426 * stuff involving subqueries, however, since we don't allow any
1427 * in check constraints.)
1428 */
1429 cexpr = eval_const_expressions(root, cexpr);
1430
1431 cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1432
1433 /*
1434 * Finally, convert to implicit-AND format (that is, a List) and
1435 * append the resulting item(s) to our output list.
1436 */
1437 result = list_concat(result,
1438 make_ands_implicit((Expr *) cexpr));
1439 }
1440
1441 /* Add NOT NULL constraints in expression form, if requested */
1442 if (include_notnull && constr->has_not_null)
1443 {
1444 int natts = relation->rd_att->natts;
1445
1446 for (i = 1; i <= natts; i++)
1447 {
1448 CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1449
1450 if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1451 {
1452 Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1453 NullTest *ntest = makeNode(NullTest);
1454
1455 ntest->arg = (Expr *) makeVar(varno,
1456 i,
1457 wholeatt->atttypid,
1458 wholeatt->atttypmod,
1459 wholeatt->attcollation,
1460 0);
1461 ntest->nulltesttype = IS_NOT_NULL;
1462
1463 /*
1464 * argisrow=false is correct even for a composite column,
1465 * because attnotnull does not represent a SQL-spec IS NOT
1466 * NULL test in such a case, just IS DISTINCT FROM NULL.
1467 */
1468 ntest->argisrow = false;
1469 ntest->location = -1;
1470 result = lappend(result, ntest);
1471 }
1472 }
1473 }
1474 }
1475
1476 /*
1477 * Add partitioning constraints, if requested.
1478 */
1479 if (include_partition && relation->rd_rel->relispartition)
1480 {
1481 /* make sure rel->partition_qual is set */
1482 set_baserel_partition_constraint(relation, rel);
1483 result = list_concat(result, rel->partition_qual);
1484 }
1485
1486 /*
1487 * Expand virtual generated columns in the constraint expressions.
1488 */
1489 if (result)
1490 result = (List *) expand_generated_columns_in_expr((Node *) result,
1491 relation,
1492 varno);
1493
1494 table_close(relation, NoLock);
1495
1496 return result;
1497}
1498
1499/*
1500 * Try loading data for the statistics object.
1501 *
1502 * We don't know if the data (specified by statOid and inh value) exist.
1503 * The result is stored in stainfos list.
1504 */
1505static void
1507 Oid statOid, bool inh,
1508 Bitmapset *keys, List *exprs)
1509{
1511 HeapTuple dtup;
1512
1513 dtup = SearchSysCache2(STATEXTDATASTXOID,
1514 ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1515 if (!HeapTupleIsValid(dtup))
1516 return;
1517
1518 dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1519
1520 /* add one StatisticExtInfo for each kind built */
1521 if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1522 {
1524
1525 info->statOid = statOid;
1526 info->inherit = dataForm->stxdinherit;
1527 info->rel = rel;
1528 info->kind = STATS_EXT_NDISTINCT;
1529 info->keys = bms_copy(keys);
1530 info->exprs = exprs;
1531
1532 *stainfos = lappend(*stainfos, info);
1533 }
1534
1535 if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1536 {
1538
1539 info->statOid = statOid;
1540 info->inherit = dataForm->stxdinherit;
1541 info->rel = rel;
1542 info->kind = STATS_EXT_DEPENDENCIES;
1543 info->keys = bms_copy(keys);
1544 info->exprs = exprs;
1545
1546 *stainfos = lappend(*stainfos, info);
1547 }
1548
1549 if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1550 {
1552
1553 info->statOid = statOid;
1554 info->inherit = dataForm->stxdinherit;
1555 info->rel = rel;
1556 info->kind = STATS_EXT_MCV;
1557 info->keys = bms_copy(keys);
1558 info->exprs = exprs;
1559
1560 *stainfos = lappend(*stainfos, info);
1561 }
1562
1563 if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1564 {
1566
1567 info->statOid = statOid;
1568 info->inherit = dataForm->stxdinherit;
1569 info->rel = rel;
1570 info->kind = STATS_EXT_EXPRESSIONS;
1571 info->keys = bms_copy(keys);
1572 info->exprs = exprs;
1573
1574 *stainfos = lappend(*stainfos, info);
1575 }
1576
1577 ReleaseSysCache(dtup);
1578}
1579
1580/*
1581 * get_relation_statistics
1582 * Retrieve extended statistics defined on the table.
1583 *
1584 * Returns a List (possibly empty) of StatisticExtInfo objects describing
1585 * the statistics. Note that this doesn't load the actual statistics data,
1586 * just the identifying metadata. Only stats actually built are considered.
1587 */
1588static List *
1590 Relation relation)
1591{
1592 Index varno = rel->relid;
1593 List *statoidlist;
1594 List *stainfos = NIL;
1595 ListCell *l;
1596
1597 statoidlist = RelationGetStatExtList(relation);
1598
1599 foreach(l, statoidlist)
1600 {
1601 Oid statOid = lfirst_oid(l);
1602 Form_pg_statistic_ext staForm;
1603 HeapTuple htup;
1604 Bitmapset *keys = NULL;
1605 List *exprs = NIL;
1606 int i;
1607
1608 htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1609 if (!HeapTupleIsValid(htup))
1610 elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1611 staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1612
1613 /*
1614 * First, build the array of columns covered. This is ultimately
1615 * wasted if no stats within the object have actually been built, but
1616 * it doesn't seem worth troubling over that case.
1617 */
1618 for (i = 0; i < staForm->stxkeys.dim1; i++)
1619 keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1620
1621 /*
1622 * Preprocess expressions (if any). We read the expressions, fix the
1623 * varnos, and run them through eval_const_expressions.
1624 *
1625 * XXX We don't know yet if there are any data for this stats object,
1626 * with either stxdinherit value. But it's reasonable to assume there
1627 * is at least one of those, possibly both. So it's better to process
1628 * keys and expressions here.
1629 */
1630 {
1631 bool isnull;
1632 Datum datum;
1633
1634 /* decode expression (if any) */
1635 datum = SysCacheGetAttr(STATEXTOID, htup,
1636 Anum_pg_statistic_ext_stxexprs, &isnull);
1637
1638 if (!isnull)
1639 {
1640 char *exprsString;
1641
1642 exprsString = TextDatumGetCString(datum);
1643 exprs = (List *) stringToNode(exprsString);
1644 pfree(exprsString);
1645
1646 /*
1647 * Modify the copies we obtain from the relcache to have the
1648 * correct varno for the parent relation, so that they match
1649 * up correctly against qual clauses.
1650 *
1651 * This must be done before const-simplification because
1652 * eval_const_expressions reduces NullTest for Vars based on
1653 * varno.
1654 */
1655 if (varno != 1)
1656 ChangeVarNodes((Node *) exprs, 1, varno, 0);
1657
1658 /*
1659 * Run the expressions through eval_const_expressions. This is
1660 * not just an optimization, but is necessary, because the
1661 * planner will be comparing them to similarly-processed qual
1662 * clauses, and may fail to detect valid matches without this.
1663 * We must not use canonicalize_qual, however, since these
1664 * aren't qual expressions.
1665 */
1666 exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1667
1668 /* May as well fix opfuncids too */
1669 fix_opfuncids((Node *) exprs);
1670 }
1671 }
1672
1673 /* extract statistics for possible values of stxdinherit flag */
1674
1675 get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1676
1677 get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1678
1679 ReleaseSysCache(htup);
1680 bms_free(keys);
1681 }
1682
1683 list_free(statoidlist);
1684
1685 return stainfos;
1686}
1687
1688/*
1689 * relation_excluded_by_constraints
1690 *
1691 * Detect whether the relation need not be scanned because it has either
1692 * self-inconsistent restrictions, or restrictions inconsistent with the
1693 * relation's applicable constraints.
1694 *
1695 * Note: this examines only rel->relid, rel->reloptkind, and
1696 * rel->baserestrictinfo; therefore it can be called before filling in
1697 * other fields of the RelOptInfo.
1698 */
1699bool
1701 RelOptInfo *rel, RangeTblEntry *rte)
1702{
1703 bool include_noinherit;
1704 bool include_notnull;
1705 bool include_partition = false;
1706 List *safe_restrictions;
1707 List *constraint_pred;
1708 List *safe_constraints;
1709 ListCell *lc;
1710
1711 /* As of now, constraint exclusion works only with simple relations. */
1712 Assert(IS_SIMPLE_REL(rel));
1713
1714 /*
1715 * If there are no base restriction clauses, we have no hope of proving
1716 * anything below, so fall out quickly.
1717 */
1718 if (rel->baserestrictinfo == NIL)
1719 return false;
1720
1721 /*
1722 * Regardless of the setting of constraint_exclusion, detect
1723 * constant-FALSE-or-NULL restriction clauses. Although const-folding
1724 * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1725 * list can still have other members besides the FALSE constant, due to
1726 * qual pushdown and other mechanisms; so check them all. This doesn't
1727 * fire very often, but it seems cheap enough to be worth doing anyway.
1728 * (Without this, we'd miss some optimizations that 9.5 and earlier found
1729 * via much more roundabout methods.)
1730 */
1731 foreach(lc, rel->baserestrictinfo)
1732 {
1733 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1734 Expr *clause = rinfo->clause;
1735
1736 if (clause && IsA(clause, Const) &&
1737 (((Const *) clause)->constisnull ||
1738 !DatumGetBool(((Const *) clause)->constvalue)))
1739 return true;
1740 }
1741
1742 /*
1743 * Skip further tests, depending on constraint_exclusion.
1744 */
1745 switch (constraint_exclusion)
1746 {
1748 /* In 'off' mode, never make any further tests */
1749 return false;
1750
1752
1753 /*
1754 * When constraint_exclusion is set to 'partition' we only handle
1755 * appendrel members. Partition pruning has already been applied,
1756 * so there is no need to consider the rel's partition constraints
1757 * here.
1758 */
1760 break; /* appendrel member, so process it */
1761 return false;
1762
1764
1765 /*
1766 * In 'on' mode, always apply constraint exclusion. If we are
1767 * considering a baserel that is a partition (i.e., it was
1768 * directly named rather than expanded from a parent table), then
1769 * its partition constraints haven't been considered yet, so
1770 * include them in the processing here.
1771 */
1772 if (rel->reloptkind == RELOPT_BASEREL)
1773 include_partition = true;
1774 break; /* always try to exclude */
1775 }
1776
1777 /*
1778 * Check for self-contradictory restriction clauses. We dare not make
1779 * deductions with non-immutable functions, but any immutable clauses that
1780 * are self-contradictory allow us to conclude the scan is unnecessary.
1781 *
1782 * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1783 * expecting to see any in its predicate argument.
1784 */
1785 safe_restrictions = NIL;
1786 foreach(lc, rel->baserestrictinfo)
1787 {
1788 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1789
1790 if (!contain_mutable_functions((Node *) rinfo->clause))
1791 safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1792 }
1793
1794 /*
1795 * We can use weak refutation here, since we're comparing restriction
1796 * clauses with restriction clauses.
1797 */
1798 if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1799 return true;
1800
1801 /*
1802 * Only plain relations have constraints, so stop here for other rtekinds.
1803 */
1804 if (rte->rtekind != RTE_RELATION)
1805 return false;
1806
1807 /*
1808 * If we are scanning just this table, we can use NO INHERIT constraints,
1809 * but not if we're scanning its children too. (Note that partitioned
1810 * tables should never have NO INHERIT constraints; but it's not necessary
1811 * for us to assume that here.)
1812 */
1813 include_noinherit = !rte->inh;
1814
1815 /*
1816 * Currently, attnotnull constraints must be treated as NO INHERIT unless
1817 * this is a partitioned table. In future we might track their
1818 * inheritance status more accurately, allowing this to be refined.
1819 *
1820 * XXX do we need/want to change this?
1821 */
1822 include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1823
1824 /*
1825 * Fetch the appropriate set of constraint expressions.
1826 */
1827 constraint_pred = get_relation_constraints(root, rte->relid, rel,
1828 include_noinherit,
1829 include_notnull,
1830 include_partition);
1831
1832 /*
1833 * We do not currently enforce that CHECK constraints contain only
1834 * immutable functions, so it's necessary to check here. We daren't draw
1835 * conclusions from plan-time evaluation of non-immutable functions. Since
1836 * they're ANDed, we can just ignore any mutable constraints in the list,
1837 * and reason about the rest.
1838 */
1839 safe_constraints = NIL;
1840 foreach(lc, constraint_pred)
1841 {
1842 Node *pred = (Node *) lfirst(lc);
1843
1844 if (!contain_mutable_functions(pred))
1845 safe_constraints = lappend(safe_constraints, pred);
1846 }
1847
1848 /*
1849 * The constraints are effectively ANDed together, so we can just try to
1850 * refute the entire collection at once. This may allow us to make proofs
1851 * that would fail if we took them individually.
1852 *
1853 * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1854 * an obvious optimization. Some of the clauses might be OR clauses that
1855 * have volatile and nonvolatile subclauses, and it's OK to make
1856 * deductions with the nonvolatile parts.
1857 *
1858 * We need strong refutation because we have to prove that the constraints
1859 * would yield false, not just NULL.
1860 */
1861 if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1862 return true;
1863
1864 return false;
1865}
1866
1867
1868/*
1869 * build_physical_tlist
1870 *
1871 * Build a targetlist consisting of exactly the relation's user attributes,
1872 * in order. The executor can special-case such tlists to avoid a projection
1873 * step at runtime, so we use such tlists preferentially for scan nodes.
1874 *
1875 * Exception: if there are any dropped or missing columns, we punt and return
1876 * NIL. Ideally we would like to handle these cases too. However this
1877 * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1878 * for a tlist that includes vars of no-longer-existent types. In theory we
1879 * could dig out the required info from the pg_attribute entries of the
1880 * relation, but that data is not readily available to ExecTypeFromTL.
1881 * For now, we don't apply the physical-tlist optimization when there are
1882 * dropped cols.
1883 *
1884 * We also support building a "physical" tlist for subqueries, functions,
1885 * values lists, table expressions, and CTEs, since the same optimization can
1886 * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1887 * NamedTuplestoreScan, and WorkTableScan nodes.
1888 */
1889List *
1891{
1892 List *tlist = NIL;
1893 Index varno = rel->relid;
1894 RangeTblEntry *rte = planner_rt_fetch(varno, root);
1895 Relation relation;
1896 Query *subquery;
1897 Var *var;
1898 ListCell *l;
1899 int attrno,
1900 numattrs;
1901 List *colvars;
1902
1903 switch (rte->rtekind)
1904 {
1905 case RTE_RELATION:
1906 /* Assume we already have adequate lock */
1907 relation = table_open(rte->relid, NoLock);
1908
1909 numattrs = RelationGetNumberOfAttributes(relation);
1910 for (attrno = 1; attrno <= numattrs; attrno++)
1911 {
1912 Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1913 attrno - 1);
1914
1915 if (att_tup->attisdropped || att_tup->atthasmissing)
1916 {
1917 /* found a dropped or missing col, so punt */
1918 tlist = NIL;
1919 break;
1920 }
1921
1922 var = makeVar(varno,
1923 attrno,
1924 att_tup->atttypid,
1925 att_tup->atttypmod,
1926 att_tup->attcollation,
1927 0);
1928
1929 tlist = lappend(tlist,
1930 makeTargetEntry((Expr *) var,
1931 attrno,
1932 NULL,
1933 false));
1934 }
1935
1936 table_close(relation, NoLock);
1937 break;
1938
1939 case RTE_SUBQUERY:
1940 subquery = rte->subquery;
1941 foreach(l, subquery->targetList)
1942 {
1943 TargetEntry *tle = (TargetEntry *) lfirst(l);
1944
1945 /*
1946 * A resjunk column of the subquery can be reflected as
1947 * resjunk in the physical tlist; we need not punt.
1948 */
1949 var = makeVarFromTargetEntry(varno, tle);
1950
1951 tlist = lappend(tlist,
1952 makeTargetEntry((Expr *) var,
1953 tle->resno,
1954 NULL,
1955 tle->resjunk));
1956 }
1957 break;
1958
1959 case RTE_FUNCTION:
1960 case RTE_TABLEFUNC:
1961 case RTE_VALUES:
1962 case RTE_CTE:
1964 case RTE_RESULT:
1965 /* Not all of these can have dropped cols, but share code anyway */
1966 expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
1967 true /* include dropped */ , NULL, &colvars);
1968 foreach(l, colvars)
1969 {
1970 var = (Var *) lfirst(l);
1971
1972 /*
1973 * A non-Var in expandRTE's output means a dropped column;
1974 * must punt.
1975 */
1976 if (!IsA(var, Var))
1977 {
1978 tlist = NIL;
1979 break;
1980 }
1981
1982 tlist = lappend(tlist,
1983 makeTargetEntry((Expr *) var,
1984 var->varattno,
1985 NULL,
1986 false));
1987 }
1988 break;
1989
1990 default:
1991 /* caller error */
1992 elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1993 (int) rte->rtekind);
1994 break;
1995 }
1996
1997 return tlist;
1998}
1999
2000/*
2001 * build_index_tlist
2002 *
2003 * Build a targetlist representing the columns of the specified index.
2004 * Each column is represented by a Var for the corresponding base-relation
2005 * column, or an expression in base-relation Vars, as appropriate.
2006 *
2007 * There are never any dropped columns in indexes, so unlike
2008 * build_physical_tlist, we need no failure case.
2009 */
2010static List *
2012 Relation heapRelation)
2013{
2014 List *tlist = NIL;
2015 Index varno = index->rel->relid;
2016 ListCell *indexpr_item;
2017 int i;
2018
2019 indexpr_item = list_head(index->indexprs);
2020 for (i = 0; i < index->ncolumns; i++)
2021 {
2022 int indexkey = index->indexkeys[i];
2023 Expr *indexvar;
2024
2025 if (indexkey != 0)
2026 {
2027 /* simple column */
2028 const FormData_pg_attribute *att_tup;
2029
2030 if (indexkey < 0)
2031 att_tup = SystemAttributeDefinition(indexkey);
2032 else
2033 att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2034
2035 indexvar = (Expr *) makeVar(varno,
2036 indexkey,
2037 att_tup->atttypid,
2038 att_tup->atttypmod,
2039 att_tup->attcollation,
2040 0);
2041 }
2042 else
2043 {
2044 /* expression column */
2045 if (indexpr_item == NULL)
2046 elog(ERROR, "wrong number of index expressions");
2047 indexvar = (Expr *) lfirst(indexpr_item);
2048 indexpr_item = lnext(index->indexprs, indexpr_item);
2049 }
2050
2051 tlist = lappend(tlist,
2052 makeTargetEntry(indexvar,
2053 i + 1,
2054 NULL,
2055 false));
2056 }
2057 if (indexpr_item != NULL)
2058 elog(ERROR, "wrong number of index expressions");
2059
2060 return tlist;
2061}
2062
2063/*
2064 * restriction_selectivity
2065 *
2066 * Returns the selectivity of a specified restriction operator clause.
2067 * This code executes registered procedures stored in the
2068 * operator relation, by calling the function manager.
2069 *
2070 * See clause_selectivity() for the meaning of the additional parameters.
2071 */
2074 Oid operatorid,
2075 List *args,
2076 Oid inputcollid,
2077 int varRelid)
2078{
2079 RegProcedure oprrest = get_oprrest(operatorid);
2080 float8 result;
2081
2082 /*
2083 * if the oprrest procedure is missing for whatever reason, use a
2084 * selectivity of 0.5
2085 */
2086 if (!oprrest)
2087 return (Selectivity) 0.5;
2088
2089 result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2090 inputcollid,
2092 ObjectIdGetDatum(operatorid),
2094 Int32GetDatum(varRelid)));
2095
2096 if (result < 0.0 || result > 1.0)
2097 elog(ERROR, "invalid restriction selectivity: %f", result);
2098
2099 return (Selectivity) result;
2100}
2101
2102/*
2103 * join_selectivity
2104 *
2105 * Returns the selectivity of a specified join operator clause.
2106 * This code executes registered procedures stored in the
2107 * operator relation, by calling the function manager.
2108 *
2109 * See clause_selectivity() for the meaning of the additional parameters.
2110 */
2113 Oid operatorid,
2114 List *args,
2115 Oid inputcollid,
2116 JoinType jointype,
2117 SpecialJoinInfo *sjinfo)
2118{
2119 RegProcedure oprjoin = get_oprjoin(operatorid);
2120 float8 result;
2121
2122 /*
2123 * if the oprjoin procedure is missing for whatever reason, use a
2124 * selectivity of 0.5
2125 */
2126 if (!oprjoin)
2127 return (Selectivity) 0.5;
2128
2129 result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2130 inputcollid,
2132 ObjectIdGetDatum(operatorid),
2134 Int16GetDatum(jointype),
2135 PointerGetDatum(sjinfo)));
2136
2137 if (result < 0.0 || result > 1.0)
2138 elog(ERROR, "invalid join selectivity: %f", result);
2139
2140 return (Selectivity) result;
2141}
2142
2143/*
2144 * function_selectivity
2145 *
2146 * Attempt to estimate the selectivity of a specified boolean function clause
2147 * by asking its support function. If the function lacks support, return -1.
2148 *
2149 * See clause_selectivity() for the meaning of the additional parameters.
2150 */
2153 Oid funcid,
2154 List *args,
2155 Oid inputcollid,
2156 bool is_join,
2157 int varRelid,
2158 JoinType jointype,
2159 SpecialJoinInfo *sjinfo)
2160{
2161 RegProcedure prosupport = get_func_support(funcid);
2164
2165 if (!prosupport)
2166 return (Selectivity) -1; /* no support function */
2167
2168 req.type = T_SupportRequestSelectivity;
2169 req.root = root;
2170 req.funcid = funcid;
2171 req.args = args;
2172 req.inputcollid = inputcollid;
2173 req.is_join = is_join;
2174 req.varRelid = varRelid;
2175 req.jointype = jointype;
2176 req.sjinfo = sjinfo;
2177 req.selectivity = -1; /* to catch failure to set the value */
2178
2179 sresult = (SupportRequestSelectivity *)
2181 PointerGetDatum(&req)));
2182
2183 if (sresult != &req)
2184 return (Selectivity) -1; /* function did not honor request */
2185
2186 if (req.selectivity < 0.0 || req.selectivity > 1.0)
2187 elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2188
2189 return (Selectivity) req.selectivity;
2190}
2191
2192/*
2193 * add_function_cost
2194 *
2195 * Get an estimate of the execution cost of a function, and *add* it to
2196 * the contents of *cost. The estimate may include both one-time and
2197 * per-tuple components, since QualCost does.
2198 *
2199 * The funcid must always be supplied. If it is being called as the
2200 * implementation of a specific parsetree node (FuncExpr, OpExpr,
2201 * WindowFunc, etc), pass that as "node", else pass NULL.
2202 *
2203 * In some usages root might be NULL, too.
2204 */
2205void
2207 QualCost *cost)
2208{
2209 HeapTuple proctup;
2210 Form_pg_proc procform;
2211
2212 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2213 if (!HeapTupleIsValid(proctup))
2214 elog(ERROR, "cache lookup failed for function %u", funcid);
2215 procform = (Form_pg_proc) GETSTRUCT(proctup);
2216
2217 if (OidIsValid(procform->prosupport))
2218 {
2220 SupportRequestCost *sresult;
2221
2222 req.type = T_SupportRequestCost;
2223 req.root = root;
2224 req.funcid = funcid;
2225 req.node = node;
2226
2227 /* Initialize cost fields so that support function doesn't have to */
2228 req.startup = 0;
2229 req.per_tuple = 0;
2230
2231 sresult = (SupportRequestCost *)
2232 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2233 PointerGetDatum(&req)));
2234
2235 if (sresult == &req)
2236 {
2237 /* Success, so accumulate support function's estimate into *cost */
2238 cost->startup += req.startup;
2239 cost->per_tuple += req.per_tuple;
2240 ReleaseSysCache(proctup);
2241 return;
2242 }
2243 }
2244
2245 /* No support function, or it failed, so rely on procost */
2246 cost->per_tuple += procform->procost * cpu_operator_cost;
2247
2248 ReleaseSysCache(proctup);
2249}
2250
2251/*
2252 * get_function_rows
2253 *
2254 * Get an estimate of the number of rows returned by a set-returning function.
2255 *
2256 * The funcid must always be supplied. In current usage, the calling node
2257 * will always be supplied, and will be either a FuncExpr or OpExpr.
2258 * But it's a good idea to not fail if it's NULL.
2259 *
2260 * In some usages root might be NULL, too.
2261 *
2262 * Note: this returns the unfiltered result of the support function, if any.
2263 * It's usually a good idea to apply clamp_row_est() to the result, but we
2264 * leave it to the caller to do so.
2265 */
2266double
2268{
2269 HeapTuple proctup;
2270 Form_pg_proc procform;
2271 double result;
2272
2273 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2274 if (!HeapTupleIsValid(proctup))
2275 elog(ERROR, "cache lookup failed for function %u", funcid);
2276 procform = (Form_pg_proc) GETSTRUCT(proctup);
2277
2278 Assert(procform->proretset); /* else caller error */
2279
2280 if (OidIsValid(procform->prosupport))
2281 {
2283 SupportRequestRows *sresult;
2284
2285 req.type = T_SupportRequestRows;
2286 req.root = root;
2287 req.funcid = funcid;
2288 req.node = node;
2289
2290 req.rows = 0; /* just for sanity */
2291
2292 sresult = (SupportRequestRows *)
2293 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2294 PointerGetDatum(&req)));
2295
2296 if (sresult == &req)
2297 {
2298 /* Success */
2299 ReleaseSysCache(proctup);
2300 return req.rows;
2301 }
2302 }
2303
2304 /* No support function, or it failed, so rely on prorows */
2305 result = procform->prorows;
2306
2307 ReleaseSysCache(proctup);
2308
2309 return result;
2310}
2311
2312/*
2313 * has_unique_index
2314 *
2315 * Detect whether there is a unique index on the specified attribute
2316 * of the specified relation, thus allowing us to conclude that all
2317 * the (non-null) values of the attribute are distinct.
2318 *
2319 * This function does not check the index's indimmediate property, which
2320 * means that uniqueness may transiently fail to hold intra-transaction.
2321 * That's appropriate when we are making statistical estimates, but beware
2322 * of using this for any correctness proofs.
2323 */
2324bool
2326{
2327 ListCell *ilist;
2328
2329 foreach(ilist, rel->indexlist)
2330 {
2331 IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2332
2333 /*
2334 * Note: ignore partial indexes, since they don't allow us to conclude
2335 * that all attr values are distinct, *unless* they are marked predOK
2336 * which means we know the index's predicate is satisfied by the
2337 * query. We don't take any interest in expressional indexes either.
2338 * Also, a multicolumn unique index doesn't allow us to conclude that
2339 * just the specified attr is unique.
2340 */
2341 if (index->unique &&
2342 index->nkeycolumns == 1 &&
2343 index->indexkeys[0] == attno &&
2344 (index->indpred == NIL || index->predOK))
2345 return true;
2346 }
2347 return false;
2348}
2349
2350
2351/*
2352 * has_row_triggers
2353 *
2354 * Detect whether the specified relation has any row-level triggers for event.
2355 */
2356bool
2358{
2359 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2360 Relation relation;
2361 TriggerDesc *trigDesc;
2362 bool result = false;
2363
2364 /* Assume we already have adequate lock */
2365 relation = table_open(rte->relid, NoLock);
2366
2367 trigDesc = relation->trigdesc;
2368 switch (event)
2369 {
2370 case CMD_INSERT:
2371 if (trigDesc &&
2372 (trigDesc->trig_insert_after_row ||
2373 trigDesc->trig_insert_before_row))
2374 result = true;
2375 break;
2376 case CMD_UPDATE:
2377 if (trigDesc &&
2378 (trigDesc->trig_update_after_row ||
2379 trigDesc->trig_update_before_row))
2380 result = true;
2381 break;
2382 case CMD_DELETE:
2383 if (trigDesc &&
2384 (trigDesc->trig_delete_after_row ||
2385 trigDesc->trig_delete_before_row))
2386 result = true;
2387 break;
2388 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2389 case CMD_MERGE:
2390 result = false;
2391 break;
2392 default:
2393 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2394 break;
2395 }
2396
2397 table_close(relation, NoLock);
2398 return result;
2399}
2400
2401/*
2402 * has_transition_tables
2403 *
2404 * Detect whether the specified relation has any transition tables for event.
2405 */
2406bool
2408{
2409 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2410 Relation relation;
2411 TriggerDesc *trigDesc;
2412 bool result = false;
2413
2414 Assert(rte->rtekind == RTE_RELATION);
2415
2416 /* Currently foreign tables cannot have transition tables */
2417 if (rte->relkind == RELKIND_FOREIGN_TABLE)
2418 return result;
2419
2420 /* Assume we already have adequate lock */
2421 relation = table_open(rte->relid, NoLock);
2422
2423 trigDesc = relation->trigdesc;
2424 switch (event)
2425 {
2426 case CMD_INSERT:
2427 if (trigDesc &&
2428 trigDesc->trig_insert_new_table)
2429 result = true;
2430 break;
2431 case CMD_UPDATE:
2432 if (trigDesc &&
2433 (trigDesc->trig_update_old_table ||
2434 trigDesc->trig_update_new_table))
2435 result = true;
2436 break;
2437 case CMD_DELETE:
2438 if (trigDesc &&
2439 trigDesc->trig_delete_old_table)
2440 result = true;
2441 break;
2442 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2443 case CMD_MERGE:
2444 result = false;
2445 break;
2446 default:
2447 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2448 break;
2449 }
2450
2451 table_close(relation, NoLock);
2452 return result;
2453}
2454
2455/*
2456 * has_stored_generated_columns
2457 *
2458 * Does table identified by RTI have any STORED GENERATED columns?
2459 */
2460bool
2462{
2463 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2464 Relation relation;
2465 TupleDesc tupdesc;
2466 bool result = false;
2467
2468 /* Assume we already have adequate lock */
2469 relation = table_open(rte->relid, NoLock);
2470
2471 tupdesc = RelationGetDescr(relation);
2472 result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2473
2474 table_close(relation, NoLock);
2475
2476 return result;
2477}
2478
2479/*
2480 * get_dependent_generated_columns
2481 *
2482 * Get the column numbers of any STORED GENERATED columns of the relation
2483 * that depend on any column listed in target_cols. Both the input and
2484 * result bitmapsets contain column numbers offset by
2485 * FirstLowInvalidHeapAttributeNumber.
2486 */
2487Bitmapset *
2489 Bitmapset *target_cols)
2490{
2491 Bitmapset *dependentCols = NULL;
2492 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2493 Relation relation;
2494 TupleDesc tupdesc;
2495 TupleConstr *constr;
2496
2497 /* Assume we already have adequate lock */
2498 relation = table_open(rte->relid, NoLock);
2499
2500 tupdesc = RelationGetDescr(relation);
2501 constr = tupdesc->constr;
2502
2503 if (constr && constr->has_generated_stored)
2504 {
2505 for (int i = 0; i < constr->num_defval; i++)
2506 {
2507 AttrDefault *defval = &constr->defval[i];
2508 Node *expr;
2509 Bitmapset *attrs_used = NULL;
2510
2511 /* skip if not generated column */
2512 if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2513 continue;
2514
2515 /* identify columns this generated column depends on */
2516 expr = stringToNode(defval->adbin);
2517 pull_varattnos(expr, 1, &attrs_used);
2518
2519 if (bms_overlap(target_cols, attrs_used))
2520 dependentCols = bms_add_member(dependentCols,
2522 }
2523 }
2524
2525 table_close(relation, NoLock);
2526
2527 return dependentCols;
2528}
2529
2530/*
2531 * set_relation_partition_info
2532 *
2533 * Set partitioning scheme and related information for a partitioned table.
2534 */
2535static void
2537 Relation relation)
2538{
2539 PartitionDesc partdesc;
2540
2541 /*
2542 * Create the PartitionDirectory infrastructure if we didn't already.
2543 */
2544 if (root->glob->partition_directory == NULL)
2545 {
2546 root->glob->partition_directory =
2548 }
2549
2550 partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2551 relation);
2552 rel->part_scheme = find_partition_scheme(root, relation);
2553 Assert(partdesc != NULL && rel->part_scheme != NULL);
2554 rel->boundinfo = partdesc->boundinfo;
2555 rel->nparts = partdesc->nparts;
2556 set_baserel_partition_key_exprs(relation, rel);
2557 set_baserel_partition_constraint(relation, rel);
2558}
2559
2560/*
2561 * find_partition_scheme
2562 *
2563 * Find or create a PartitionScheme for this Relation.
2564 */
2565static PartitionScheme
2567{
2568 PartitionKey partkey = RelationGetPartitionKey(relation);
2569 ListCell *lc;
2570 int partnatts,
2571 i;
2572 PartitionScheme part_scheme;
2573
2574 /* A partitioned table should have a partition key. */
2575 Assert(partkey != NULL);
2576
2577 partnatts = partkey->partnatts;
2578
2579 /* Search for a matching partition scheme and return if found one. */
2580 foreach(lc, root->part_schemes)
2581 {
2582 part_scheme = lfirst(lc);
2583
2584 /* Match partitioning strategy and number of keys. */
2585 if (partkey->strategy != part_scheme->strategy ||
2586 partnatts != part_scheme->partnatts)
2587 continue;
2588
2589 /* Match partition key type properties. */
2590 if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2591 sizeof(Oid) * partnatts) != 0 ||
2592 memcmp(partkey->partopcintype, part_scheme->partopcintype,
2593 sizeof(Oid) * partnatts) != 0 ||
2594 memcmp(partkey->partcollation, part_scheme->partcollation,
2595 sizeof(Oid) * partnatts) != 0)
2596 continue;
2597
2598 /*
2599 * Length and byval information should match when partopcintype
2600 * matches.
2601 */
2602 Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2603 sizeof(int16) * partnatts) == 0);
2604 Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2605 sizeof(bool) * partnatts) == 0);
2606
2607 /*
2608 * If partopfamily and partopcintype matched, must have the same
2609 * partition comparison functions. Note that we cannot reliably
2610 * Assert the equality of function structs themselves for they might
2611 * be different across PartitionKey's, so just Assert for the function
2612 * OIDs.
2613 */
2614#ifdef USE_ASSERT_CHECKING
2615 for (i = 0; i < partkey->partnatts; i++)
2616 Assert(partkey->partsupfunc[i].fn_oid ==
2617 part_scheme->partsupfunc[i].fn_oid);
2618#endif
2619
2620 /* Found matching partition scheme. */
2621 return part_scheme;
2622 }
2623
2624 /*
2625 * Did not find matching partition scheme. Create one copying relevant
2626 * information from the relcache. We need to copy the contents of the
2627 * array since the relcache entry may not survive after we have closed the
2628 * relation.
2629 */
2630 part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2631 part_scheme->strategy = partkey->strategy;
2632 part_scheme->partnatts = partkey->partnatts;
2633
2634 part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2635 memcpy(part_scheme->partopfamily, partkey->partopfamily,
2636 sizeof(Oid) * partnatts);
2637
2638 part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2639 memcpy(part_scheme->partopcintype, partkey->partopcintype,
2640 sizeof(Oid) * partnatts);
2641
2642 part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2643 memcpy(part_scheme->partcollation, partkey->partcollation,
2644 sizeof(Oid) * partnatts);
2645
2646 part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2647 memcpy(part_scheme->parttyplen, partkey->parttyplen,
2648 sizeof(int16) * partnatts);
2649
2650 part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2651 memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2652 sizeof(bool) * partnatts);
2653
2654 part_scheme->partsupfunc = (FmgrInfo *)
2655 palloc(sizeof(FmgrInfo) * partnatts);
2656 for (i = 0; i < partnatts; i++)
2657 fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2659
2660 /* Add the partitioning scheme to PlannerInfo. */
2661 root->part_schemes = lappend(root->part_schemes, part_scheme);
2662
2663 return part_scheme;
2664}
2665
2666/*
2667 * set_baserel_partition_key_exprs
2668 *
2669 * Builds partition key expressions for the given base relation and fills
2670 * rel->partexprs.
2671 */
2672static void
2674 RelOptInfo *rel)
2675{
2676 PartitionKey partkey = RelationGetPartitionKey(relation);
2677 int partnatts;
2678 int cnt;
2679 List **partexprs;
2680 ListCell *lc;
2681 Index varno = rel->relid;
2682
2683 Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2684
2685 /* A partitioned table should have a partition key. */
2686 Assert(partkey != NULL);
2687
2688 partnatts = partkey->partnatts;
2689 partexprs = (List **) palloc(sizeof(List *) * partnatts);
2690 lc = list_head(partkey->partexprs);
2691
2692 for (cnt = 0; cnt < partnatts; cnt++)
2693 {
2694 Expr *partexpr;
2695 AttrNumber attno = partkey->partattrs[cnt];
2696
2697 if (attno != InvalidAttrNumber)
2698 {
2699 /* Single column partition key is stored as a Var node. */
2700 Assert(attno > 0);
2701
2702 partexpr = (Expr *) makeVar(varno, attno,
2703 partkey->parttypid[cnt],
2704 partkey->parttypmod[cnt],
2705 partkey->parttypcoll[cnt], 0);
2706 }
2707 else
2708 {
2709 if (lc == NULL)
2710 elog(ERROR, "wrong number of partition key expressions");
2711
2712 /* Re-stamp the expression with given varno. */
2713 partexpr = (Expr *) copyObject(lfirst(lc));
2714 ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2715 lc = lnext(partkey->partexprs, lc);
2716 }
2717
2718 /* Base relations have a single expression per key. */
2719 partexprs[cnt] = list_make1(partexpr);
2720 }
2721
2722 rel->partexprs = partexprs;
2723
2724 /*
2725 * A base relation does not have nullable partition key expressions, since
2726 * no outer join is involved. We still allocate an array of empty
2727 * expression lists to keep partition key expression handling code simple.
2728 * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2729 */
2730 rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2731}
2732
2733/*
2734 * set_baserel_partition_constraint
2735 *
2736 * Builds the partition constraint for the given base relation and sets it
2737 * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2738 * given relation.
2739 */
2740static void
2742{
2743 List *partconstr;
2744
2745 if (rel->partition_qual) /* already done */
2746 return;
2747
2748 /*
2749 * Run the partition quals through const-simplification similar to check
2750 * constraints. We skip canonicalize_qual, though, because partition
2751 * quals should be in canonical form already; also, since the qual is in
2752 * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2753 * format and back again.
2754 */
2755 partconstr = RelationGetPartitionQual(relation);
2756 if (partconstr)
2757 {
2758 partconstr = (List *) expression_planner((Expr *) partconstr);
2759 if (rel->relid != 1)
2760 ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2761 rel->partition_qual = partconstr;
2762 }
2763}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
uint32 BlockNumber
Definition: block.h:31
static int32 next
Definition: blutils.c:224
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:283
#define SizeOfPageHeaderData
Definition: bufpage.h:217
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define MAXALIGN(LEN)
Definition: c.h:811
int64_t int64
Definition: c.h:536
double float8
Definition: c.h:636
int16_t int16
Definition: c.h:534
regproc RegProcedure
Definition: c.h:656
int32_t int32
Definition: c.h:535
#define unlikely(x)
Definition: c.h:403
unsigned int Index
Definition: c.h:620
#define OidIsValid(objectId)
Definition: c.h:775
bool IsSystemRelation(Relation relation)
Definition: catalog.c:74
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:374
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2262
CompareType
Definition: cmptype.h:32
@ COMPARE_LT
Definition: cmptype.h:34
@ CONSTRAINT_EXCLUSION_OFF
Definition: cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition: cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition: cost.h:39
double cpu_operator_cost
Definition: costsize.c:134
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:952
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:358
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool statext_is_kind_built(HeapTuple htup, char type)
Datum OidFunctionCall5Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:1453
Datum OidFunctionCall4Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition: fmgr.c:1442
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:580
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:720
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:443
Oid GetForeignServerIdByRelId(Oid relid)
Definition: foreign.c:356
Assert(PointerIsAligned(start, uint64))
const FormData_pg_attribute * SystemAttributeDefinition(AttrNumber attno)
Definition: heap.c:236
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:324
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
bool index_can_return(Relation indexRelation, int attno)
Definition: indexam.c:845
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
struct ItemIdData ItemIdData
List * list_difference(const List *list1, const List *list2)
Definition: list.c:1237
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * lcons(void *datum, List *list)
Definition: list.c:495
void list_free(List *list)
Definition: list.c:1546
bool list_member(const List *list, const void *datum)
Definition: list.c:661
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
RegProcedure get_oprrest(Oid opno)
Definition: lsyscache.c:1724
Oid get_constraint_index(Oid conoid)
Definition: lsyscache.c:1206
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, CompareType *cmptype)
Definition: lsyscache.c:266
Oid get_opclass_input_type(Oid opclass)
Definition: lsyscache.c:1331
Oid get_opclass_family(Oid opclass)
Definition: lsyscache.c:1309
Oid get_opfamily_member_for_cmptype(Oid opfamily, Oid lefttype, Oid righttype, CompareType cmptype)
Definition: lsyscache.c:197
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:2025
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:3325
RegProcedure get_oprjoin(Oid opno)
Definition: lsyscache.c:1748
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2745
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:810
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
bool IgnoreSystemIndexes
Definition: miscinit.c:81
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1841
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
@ ONCONFLICT_UPDATE
Definition: nodes.h:430
CmdType
Definition: nodes.h:273
@ CMD_MERGE
Definition: nodes.h:279
@ CMD_INSERT
Definition: nodes.h:277
@ CMD_DELETE
Definition: nodes.h:278
@ CMD_UPDATE
Definition: nodes.h:276
double Selectivity
Definition: nodes.h:260
#define makeNode(_type_)
Definition: nodes.h:161
JoinType
Definition: nodes.h:298
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, VarReturningType returning_type, int location, bool include_dropped, List **colnames, List **colvars)
@ RTE_CTE
Definition: parsenodes.h:1047
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1048
@ RTE_VALUES
Definition: parsenodes.h:1046
@ RTE_SUBQUERY
Definition: parsenodes.h:1042
@ RTE_RESULT
Definition: parsenodes.h:1049
@ RTE_FUNCTION
Definition: parsenodes.h:1044
@ RTE_TABLEFUNC
Definition: parsenodes.h:1045
@ RTE_RELATION
Definition: parsenodes.h:1041
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * RelationGetPartitionQual(Relation rel)
Definition: partcache.c:277
PartitionKey RelationGetPartitionKey(Relation rel)
Definition: partcache.c:51
PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt, bool omit_detached)
Definition: partdesc.c:423
PartitionDesc PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
Definition: partdesc.c:456
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:876
Bitmapset * Relids
Definition: pathnodes.h:30
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:591
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:625
@ RELOPT_BASEREL
Definition: pathnodes.h:864
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:866
#define AMFLAG_HAS_TID_RANGE
Definition: pathnodes.h:860
FormData_pg_attribute
Definition: pg_attribute.h:186
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
int errdetail_relkind_not_supported(char relkind)
Definition: pg_class.c:24
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
FormData_pg_statistic_ext * Form_pg_statistic_ext
FormData_pg_statistic_ext_data * Form_pg_statistic_ext_data
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: plancat.c:1156
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition: plancat.c:1281
bool has_stored_generated_columns(PlannerInfo *root, Index rti)
Definition: plancat.c:2461
static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel, Relation relation, bool inhparent)
Definition: plancat.c:576
void get_relation_notnullatts(PlannerInfo *root, Relation relation)
Definition: plancat.c:682
int constraint_exclusion
Definition: plancat.c:58
bool relation_excluded_by_constraints(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
Definition: plancat.c:1700
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2267
bool has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2357
static List * get_relation_constraints(PlannerInfo *root, Oid relationObjectId, RelOptInfo *rel, bool include_noinherit, bool include_notnull, bool include_partition)
Definition: plancat.c:1364
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2206
get_relation_info_hook_type get_relation_info_hook
Definition: plancat.c:61
static void get_relation_statistics_worker(List **stainfos, RelOptInfo *rel, Oid statOid, bool inh, Bitmapset *keys, List *exprs)
Definition: plancat.c:1506
List * build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
Definition: plancat.c:1890
static List * get_relation_statistics(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:1589
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition: plancat.c:2073
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1323
static void set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2741
struct NotnullHashEntry NotnullHashEntry
static List * build_index_tlist(PlannerInfo *root, IndexOptInfo *index, Relation heapRelation)
Definition: plancat.c:2011
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel, List *idxExprs)
Definition: plancat.c:1074
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:2536
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition: plancat.c:2325
Bitmapset * find_relation_notnullatts(PlannerInfo *root, Oid relid)
Definition: plancat.c:755
bool has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2407
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation relation)
Definition: plancat.c:2566
static void set_baserel_partition_key_exprs(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2673
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2112
Selectivity function_selectivity(PlannerInfo *root, Oid funcid, List *args, Oid inputcollid, bool is_join, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2152
Bitmapset * get_dependent_generated_columns(PlannerInfo *root, Index rti, Bitmapset *target_cols)
Definition: plancat.c:2488
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:124
List * infer_arbiter_indexes(PlannerInfo *root)
Definition: plancat.c:794
void(* get_relation_info_hook_type)(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.h:21
Expr * expression_planner(Expr *expr)
Definition: planner.c:6719
int restrict_nonsystem_relation_kind
Definition: postgres.c:105
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:182
static Datum BoolGetDatum(bool X)
Definition: postgres.h:112
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:475
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
bool predicate_refuted_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:222
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:152
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
@ VAR_RETURNING_DEFAULT
Definition: primnodes.h:256
@ IS_NOT_NULL
Definition: primnodes.h:1963
tree ctl root
Definition: radixtree.h:1857
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:508
#define RelationGetRelid(relation)
Definition: rel.h:514
#define RelationGetParallelWorkers(relation, defaultpw)
Definition: rel.h:408
#define RelationGetDescr(relation)
Definition: rel.h:540
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:520
#define RelationGetRelationName(relation)
Definition: rel.h:548
#define RelationIsPermanent(relation)
Definition: rel.h:626
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4836
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5210
List * RelationGetStatExtList(Relation relation)
Definition: relcache.c:4977
List * RelationGetFKeyList(Relation relation)
Definition: relcache.c:4731
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5097
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition: relcache.c:5988
Node * expand_generated_columns_in_expr(Node *node, Relation rel, int rt_index)
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:736
TransactionId TransactionXmin
Definition: snapmgr.c:158
AttrNumber adnum
Definition: tupdesc.h:24
char * adbin
Definition: tupdesc.h:25
bool attisdropped
Definition: tupdesc.h:77
char attnullability
Definition: tupdesc.h:79
bool ccenforced
Definition: tupdesc.h:32
bool ccnoinherit
Definition: tupdesc.h:34
bool ccvalid
Definition: tupdesc.h:33
char * ccbin
Definition: tupdesc.h:31
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
bool conenforced
Definition: rel.h:288
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition: pathnodes.h:1309
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1313
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition: pathnodes.h:1311
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
Definition: dynahash.c:222
HeapTupleHeader t_data
Definition: htup.h:68
amrestrpos_function amrestrpos
Definition: amapi.h:313
amcostestimate_function amcostestimate
Definition: amapi.h:300
bool amcanorderbyop
Definition: amapi.h:246
bool amoptionalkey
Definition: amapi.h:260
amgettuple_function amgettuple
Definition: amapi.h:309
amgetbitmap_function amgetbitmap
Definition: amapi.h:310
bool amsearcharray
Definition: amapi.h:262
ammarkpos_function ammarkpos
Definition: amapi.h:312
bool amcanparallel
Definition: amapi.h:272
bool amcanorder
Definition: amapi.h:244
amgettreeheight_function amgettreeheight
Definition: amapi.h:301
bool amsearchnulls
Definition: amapi.h:264
bool amcanparallel
Definition: pathnodes.h:1257
void(* amcostestimate)(struct PlannerInfo *, struct IndexPath *, double, Cost *, Cost *, Selectivity *, double *, double *) pg_node_attr(read_write_ignore)
Definition: pathnodes.h:1262
bool amoptionalkey
Definition: pathnodes.h:1250
Oid reltablespace
Definition: pathnodes.h:1170
bool amcanmarkpos
Definition: pathnodes.h:1259
List * indrestrictinfo
Definition: pathnodes.h:1232
bool amhasgettuple
Definition: pathnodes.h:1254
bool amcanorderbyop
Definition: pathnodes.h:1249
bool hypothetical
Definition: pathnodes.h:1243
bool nullsnotdistinct
Definition: pathnodes.h:1239
List * indpred
Definition: pathnodes.h:1222
Cardinality tuples
Definition: pathnodes.h:1180
bool amsearcharray
Definition: pathnodes.h:1251
BlockNumber pages
Definition: pathnodes.h:1178
bool amsearchnulls
Definition: pathnodes.h:1252
bool amhasgetbitmap
Definition: pathnodes.h:1256
List * indextlist
Definition: pathnodes.h:1225
bool immediate
Definition: pathnodes.h:1241
Definition: pg_list.h:54
Definition: nodes.h:135
Bitmapset * notnullattnums
Definition: plancat.c:66
NullTestType nulltesttype
Definition: primnodes.h:1970
ParseLoc location
Definition: primnodes.h:1973
Expr * arg
Definition: primnodes.h:1969
List * arbiterElems
Definition: primnodes.h:2362
OnConflictAction action
Definition: primnodes.h:2359
Node * arbiterWhere
Definition: primnodes.h:2364
PartitionBoundInfo boundinfo
Definition: partdesc.h:38
Oid * partcollation
Definition: partcache.h:39
Oid * parttypcoll
Definition: partcache.h:47
int32 * parttypmod
Definition: partcache.h:43
Oid * partopfamily
Definition: partcache.h:34
bool * parttypbyval
Definition: partcache.h:45
PartitionStrategy strategy
Definition: partcache.h:27
List * partexprs
Definition: partcache.h:31
int16 * parttyplen
Definition: partcache.h:44
FmgrInfo * partsupfunc
Definition: partcache.h:36
Oid * partopcintype
Definition: partcache.h:35
AttrNumber * partattrs
Definition: partcache.h:29
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:622
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
List * targetList
Definition: parsenodes.h:198
Query * subquery
Definition: parsenodes.h:1133
RTEKind rtekind
Definition: parsenodes.h:1076
List * baserestrictinfo
Definition: pathnodes.h:1027
uint32 amflags
Definition: pathnodes.h:990
Bitmapset * notnullattnums
Definition: pathnodes.h:968
List * partition_qual
Definition: pathnodes.h:1069
Index relid
Definition: pathnodes.h:954
List * statlist
Definition: pathnodes.h:978
Cardinality tuples
Definition: pathnodes.h:981
BlockNumber pages
Definition: pathnodes.h:980
RelOptKind reloptkind
Definition: pathnodes.h:902
List * indexlist
Definition: pathnodes.h:976
Oid reltablespace
Definition: pathnodes.h:956
Oid serverid
Definition: pathnodes.h:996
int rel_parallel_workers
Definition: pathnodes.h:988
AttrNumber max_attr
Definition: pathnodes.h:962
double allvisfrac
Definition: pathnodes.h:982
AttrNumber min_attr
Definition: pathnodes.h:960
const struct TableAmRoutine * rd_tableam
Definition: rel.h:189
struct IndexAmRoutine * rd_indam
Definition: rel.h:206
TriggerDesc * trigdesc
Definition: rel.h:117
Oid * rd_opcintype
Definition: rel.h:208
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
int16 * rd_indoption
Definition: rel.h:211
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
Expr * clause
Definition: pathnodes.h:2704
Bitmapset * keys
Definition: pathnodes.h:1342
PlannerInfo * root
Definition: supportnodes.h:136
PlannerInfo * root
Definition: supportnodes.h:163
SpecialJoinInfo * sjinfo
Definition: supportnodes.h:103
bool(* scan_bitmap_next_tuple)(TableScanDesc scan, TupleTableSlot *slot, bool *recheck, uint64 *lossy_pages, uint64 *exact_pages)
Definition: tableam.h:793
bool(* scan_getnextslot_tidrange)(TableScanDesc scan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:379
void(* scan_set_tidrange)(TableScanDesc scan, ItemPointer mintid, ItemPointer maxtid)
Definition: tableam.h:371
AttrNumber resno
Definition: primnodes.h:2227
bool trig_delete_before_row
Definition: reltrigger.h:66
bool trig_update_after_row
Definition: reltrigger.h:62
bool trig_update_new_table
Definition: reltrigger.h:77
bool trig_insert_after_row
Definition: reltrigger.h:57
bool trig_update_before_row
Definition: reltrigger.h:61
bool trig_insert_new_table
Definition: reltrigger.h:75
bool trig_delete_old_table
Definition: reltrigger.h:78
bool trig_delete_after_row
Definition: reltrigger.h:67
bool trig_insert_before_row
Definition: reltrigger.h:56
bool trig_update_old_table
Definition: reltrigger.h:76
bool has_not_null
Definition: tupdesc.h:45
AttrDefault * defval
Definition: tupdesc.h:40
bool has_generated_stored
Definition: tupdesc.h:46
ConstrCheck * check
Definition: tupdesc.h:41
uint16 num_defval
Definition: tupdesc.h:43
uint16 num_check
Definition: tupdesc.h:44
TupleConstr * constr
Definition: tupdesc.h:141
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
Definition: type.h:96
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:595
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:230
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static void table_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: tableam.h:1906
#define RESTRICT_RELKIND_FOREIGN_TABLE
Definition: tcopprot.h:44
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define FirstNormalObjectId
Definition: transam.h:197
#define ATTNULLABLE_UNKNOWN
Definition: tupdesc.h:85
#define ATTNULLABLE_VALID
Definition: tupdesc.h:86
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:175
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition: var.c:296
bool RecoveryInProgress(void)
Definition: xlog.c:6383