Thanks to visit codestin.com
Credit goes to doxygen.postgresql.org

PostgreSQL Source Code git master
prepjointree.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * prepjointree.c
4 * Planner preprocessing for subqueries and join tree manipulation.
5 *
6 * NOTE: the intended sequence for invoking these operations is
7 * preprocess_relation_rtes
8 * replace_empty_jointree
9 * pull_up_sublinks
10 * preprocess_function_rtes
11 * pull_up_subqueries
12 * flatten_simple_union_all
13 * do expression preprocessing (including flattening JOIN alias vars)
14 * reduce_outer_joins
15 * remove_useless_result_rtes
16 *
17 *
18 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
19 * Portions Copyright (c) 1994, Regents of the University of California
20 *
21 *
22 * IDENTIFICATION
23 * src/backend/optimizer/prep/prepjointree.c
24 *
25 *-------------------------------------------------------------------------
26 */
27#include "postgres.h"
28
29#include "access/table.h"
30#include "catalog/pg_type.h"
31#include "funcapi.h"
32#include "miscadmin.h"
33#include "nodes/makefuncs.h"
35#include "nodes/nodeFuncs.h"
36#include "optimizer/clauses.h"
37#include "optimizer/optimizer.h"
39#include "optimizer/plancat.h"
40#include "optimizer/prep.h"
41#include "optimizer/subselect.h"
42#include "optimizer/tlist.h"
44#include "parser/parsetree.h"
47#include "utils/rel.h"
48
49
50typedef struct nullingrel_info
51{
52 /*
53 * For each leaf RTE, nullingrels[rti] is the set of relids of outer joins
54 * that potentially null that RTE.
55 */
57 /* Length of range table (maximum index in nullingrels[]) */
58 int rtlength; /* used only for assertion checks */
60
61/* Options for wrapping an expression for identification purposes */
63{
64 REPLACE_WRAP_NONE, /* no expressions need to be wrapped */
65 REPLACE_WRAP_ALL, /* all expressions need to be wrapped */
66 REPLACE_WRAP_VARFREE, /* variable-free expressions need to be
67 * wrapped */
69
71{
73 List *targetlist; /* tlist of subquery being pulled up */
74 RangeTblEntry *target_rte; /* RTE of subquery */
75 int result_relation; /* the index of the result relation in the
76 * rewritten query */
77 Relids relids; /* relids within subquery, as numbered after
78 * pullup (set only if target_rte->lateral) */
79 nullingrel_info *nullinfo; /* per-RTE nullingrel info (set only if
80 * target_rte->lateral) */
81 bool *outer_hasSubLinks; /* -> outer query's hasSubLinks */
82 int varno; /* varno of subquery */
83 ReplaceWrapOption wrap_option; /* do we need certain outputs to be PHVs? */
84 Node **rv_cache; /* cache for results with PHVs */
86
88{
89 Relids relids; /* base relids within this subtree */
90 bool contains_outer; /* does subtree contain outer join(s)? */
91 List *sub_states; /* List of states for subtree components */
93
95{
96 Relids inner_reduced; /* OJ relids reduced to plain inner joins */
97 List *partial_reduced; /* List of partially reduced FULL joins */
99
101{
102 int full_join_rti; /* RT index of a formerly-FULL join */
103 Relids unreduced_side; /* relids in its still-nullable side */
105
107 RangeTblEntry *rte, int rt_index,
108 Relation relation);
110 Relids *relids);
112 Node **jtlink1, Relids available_rels1,
113 Node **jtlink2, Relids available_rels2);
115 JoinExpr *lowest_outer_join,
116 AppendRelInfo *containing_appendrel);
118 RangeTblEntry *rte,
119 JoinExpr *lowest_outer_join,
120 AppendRelInfo *containing_appendrel);
122 RangeTblEntry *rte);
124 int parentRTindex, Query *setOpQuery,
125 int childRToffset);
126static void make_setop_translation_list(Query *query, int newvarno,
127 AppendRelInfo *appinfo);
128static bool is_simple_subquery(PlannerInfo *root, Query *subquery,
129 RangeTblEntry *rte,
130 JoinExpr *lowest_outer_join);
132 RangeTblEntry *rte);
135 RangeTblEntry *rte,
136 AppendRelInfo *containing_appendrel);
137static bool is_simple_union_all(Query *subquery);
138static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery,
139 List *colTypes);
140static bool is_safe_append_member(Query *subquery);
142 Node *jtnode, bool restricted,
143 Relids safe_upper_varnos);
146 AppendRelInfo *containing_appendrel);
147static void replace_vars_in_jointree(Node *jtnode,
149static Node *pullup_replace_vars(Node *expr,
156static void reduce_outer_joins_pass2(Node *jtnode,
160 Relids nonnullable_rels,
161 List *forced_null_vars);
163 int rtindex, Relids relids);
165 Node **parent_quals,
166 Relids *dropped_outer_joins);
167static int get_result_relid(PlannerInfo *root, Node *jtnode);
168static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc);
169static bool find_dependent_phvs(PlannerInfo *root, int varno);
171 Node *node, int varno);
172static void substitute_phv_relids(Node *node,
173 int varno, Relids subrelids);
174static void fix_append_rel_relids(PlannerInfo *root, int varno,
175 Relids subrelids);
176static Node *find_jointree_node_for_rel(Node *jtnode, int relid);
178static void get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels,
179 nullingrel_info *info);
180
181
182/*
183 * transform_MERGE_to_join
184 * Replace a MERGE's jointree to also include the target relation.
185 */
186void
188{
189 RangeTblEntry *joinrte;
190 JoinExpr *joinexpr;
191 bool have_action[NUM_MERGE_MATCH_KINDS];
192 JoinType jointype;
193 int joinrti;
194 List *vars;
195 RangeTblRef *rtr;
196 FromExpr *target;
197 Node *source;
198 int sourcerti;
199
200 if (parse->commandType != CMD_MERGE)
201 return;
202
203 /* XXX probably bogus */
204 vars = NIL;
205
206 /*
207 * Work out what kind of join is required. If there any WHEN NOT MATCHED
208 * BY SOURCE/TARGET actions, an outer join is required so that we process
209 * all unmatched tuples from the source and/or target relations.
210 * Otherwise, we can use an inner join.
211 */
212 have_action[MERGE_WHEN_MATCHED] = false;
213 have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] = false;
214 have_action[MERGE_WHEN_NOT_MATCHED_BY_TARGET] = false;
215
216 foreach_node(MergeAction, action, parse->mergeActionList)
217 {
218 if (action->commandType != CMD_NOTHING)
219 have_action[action->matchKind] = true;
220 }
221
222 if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] &&
224 jointype = JOIN_FULL;
225 else if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE])
226 jointype = JOIN_LEFT;
227 else if (have_action[MERGE_WHEN_NOT_MATCHED_BY_TARGET])
228 jointype = JOIN_RIGHT;
229 else
230 jointype = JOIN_INNER;
231
232 /* Manufacture a join RTE to use. */
233 joinrte = makeNode(RangeTblEntry);
234 joinrte->rtekind = RTE_JOIN;
235 joinrte->jointype = jointype;
236 joinrte->joinmergedcols = 0;
237 joinrte->joinaliasvars = vars;
238 joinrte->joinleftcols = NIL; /* MERGE does not allow JOIN USING */
239 joinrte->joinrightcols = NIL; /* ditto */
240 joinrte->join_using_alias = NULL;
241
242 joinrte->alias = NULL;
243 joinrte->eref = makeAlias("*MERGE*", NIL);
244 joinrte->lateral = false;
245 joinrte->inh = false;
246 joinrte->inFromCl = true;
247
248 /*
249 * Add completed RTE to pstate's range table list, so that we know its
250 * index.
251 */
252 parse->rtable = lappend(parse->rtable, joinrte);
253 joinrti = list_length(parse->rtable);
254
255 /*
256 * Create a JOIN between the target and the source relation.
257 *
258 * Here the target is identified by parse->mergeTargetRelation. For a
259 * regular table, this will equal parse->resultRelation, but for a
260 * trigger-updatable view, it will be the expanded view subquery that we
261 * need to pull data from.
262 *
263 * The source relation is in parse->jointree->fromlist, but any quals in
264 * parse->jointree->quals are restrictions on the target relation (if the
265 * target relation is an auto-updatable view).
266 */
267 /* target rel, with any quals */
268 rtr = makeNode(RangeTblRef);
269 rtr->rtindex = parse->mergeTargetRelation;
270 target = makeFromExpr(list_make1(rtr), parse->jointree->quals);
271
272 /* source rel (expect exactly one -- see transformMergeStmt()) */
273 Assert(list_length(parse->jointree->fromlist) == 1);
274 source = linitial(parse->jointree->fromlist);
275
276 /*
277 * index of source rel (expect either a RangeTblRef or a JoinExpr -- see
278 * transformFromClauseItem()).
279 */
280 if (IsA(source, RangeTblRef))
281 sourcerti = ((RangeTblRef *) source)->rtindex;
282 else if (IsA(source, JoinExpr))
283 sourcerti = ((JoinExpr *) source)->rtindex;
284 else
285 {
286 elog(ERROR, "unrecognized source node type: %d",
287 (int) nodeTag(source));
288 sourcerti = 0; /* keep compiler quiet */
289 }
290
291 /* Join the source and target */
292 joinexpr = makeNode(JoinExpr);
293 joinexpr->jointype = jointype;
294 joinexpr->isNatural = false;
295 joinexpr->larg = (Node *) target;
296 joinexpr->rarg = source;
297 joinexpr->usingClause = NIL;
298 joinexpr->join_using_alias = NULL;
299 joinexpr->quals = parse->mergeJoinCondition;
300 joinexpr->alias = NULL;
301 joinexpr->rtindex = joinrti;
302
303 /* Make the new join be the sole entry in the query's jointree */
304 parse->jointree->fromlist = list_make1(joinexpr);
305 parse->jointree->quals = NULL;
306
307 /*
308 * If necessary, mark parse->targetlist entries that refer to the target
309 * as nullable by the join. Normally the targetlist will be empty for a
310 * MERGE, but if the target is a trigger-updatable view, it will contain a
311 * whole-row Var referring to the expanded view query.
312 */
313 if (parse->targetList != NIL &&
314 (jointype == JOIN_RIGHT || jointype == JOIN_FULL))
315 parse->targetList = (List *)
316 add_nulling_relids((Node *) parse->targetList,
317 bms_make_singleton(parse->mergeTargetRelation),
318 bms_make_singleton(joinrti));
319
320 /*
321 * If the source relation is on the outer side of the join, mark any
322 * source relation Vars in the join condition, actions, and RETURNING list
323 * as nullable by the join. These Vars will be added to the targetlist by
324 * preprocess_targetlist(), so it's important to mark them correctly here.
325 *
326 * It might seem that this is not necessary for Vars in the join
327 * condition, since it is inside the join, but it is also needed above the
328 * join (in the ModifyTable node) to distinguish between the MATCHED and
329 * NOT MATCHED BY SOURCE cases -- see ExecMergeMatched(). Note that this
330 * creates a modified copy of the join condition, for use above the join,
331 * without modifying the original join condition, inside the join.
332 */
333 if (jointype == JOIN_LEFT || jointype == JOIN_FULL)
334 {
335 parse->mergeJoinCondition =
336 add_nulling_relids(parse->mergeJoinCondition,
337 bms_make_singleton(sourcerti),
338 bms_make_singleton(joinrti));
339
340 foreach_node(MergeAction, action, parse->mergeActionList)
341 {
342 action->qual =
344 bms_make_singleton(sourcerti),
345 bms_make_singleton(joinrti));
346
347 action->targetList = (List *)
348 add_nulling_relids((Node *) action->targetList,
349 bms_make_singleton(sourcerti),
350 bms_make_singleton(joinrti));
351 }
352
353 parse->returningList = (List *)
354 add_nulling_relids((Node *) parse->returningList,
355 bms_make_singleton(sourcerti),
356 bms_make_singleton(joinrti));
357 }
358
359 /*
360 * If there are any WHEN NOT MATCHED BY SOURCE actions, the executor will
361 * use the join condition to distinguish between MATCHED and NOT MATCHED
362 * BY SOURCE cases. Otherwise, it's no longer needed, and we set it to
363 * NULL, saving cycles during planning and execution.
364 *
365 * We need to be careful though: the executor evaluates this condition
366 * using the output of the join subplan node, which nulls the output from
367 * the source relation when the join condition doesn't match. That risks
368 * producing incorrect results when rechecking using a "non-strict" join
369 * condition, such as "src.col IS NOT DISTINCT FROM tgt.col". To guard
370 * against that, we add an additional "src IS NOT NULL" check to the join
371 * condition, so that it does the right thing when performing a recheck
372 * based on the output of the join subplan.
373 */
374 if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE])
375 {
376 Var *var;
377 NullTest *ntest;
378
379 /* source wholerow Var (nullable by the new join) */
380 var = makeWholeRowVar(rt_fetch(sourcerti, parse->rtable),
381 sourcerti, 0, false);
382 var->varnullingrels = bms_make_singleton(joinrti);
383
384 /* "src IS NOT NULL" check */
385 ntest = makeNode(NullTest);
386 ntest->arg = (Expr *) var;
387 ntest->nulltesttype = IS_NOT_NULL;
388 ntest->argisrow = false;
389 ntest->location = -1;
390
391 /* combine it with the original join condition */
392 parse->mergeJoinCondition =
393 (Node *) make_and_qual((Node *) ntest, parse->mergeJoinCondition);
394 }
395 else
396 parse->mergeJoinCondition = NULL; /* join condition not needed */
397}
398
399/*
400 * preprocess_relation_rtes
401 * Do the preprocessing work for any relation RTEs in the FROM clause.
402 *
403 * This scans the rangetable for relation RTEs and retrieves the necessary
404 * catalog information for each relation. Using this information, it clears
405 * the inh flag for any relation that has no children, collects not-null
406 * attribute numbers for any relation that has column not-null constraints, and
407 * expands virtual generated columns for any relation that contains them.
408 *
409 * Note that expanding virtual generated columns may cause the query tree to
410 * have new copies of rangetable entries. Therefore, we have to use list_nth
411 * instead of foreach when iterating over the query's rangetable.
412 *
413 * Returns a modified copy of the query tree, if any relations with virtual
414 * generated columns are present.
415 */
416Query *
418{
419 Query *parse = root->parse;
420 int rtable_size;
421 int rt_index;
422
423 rtable_size = list_length(parse->rtable);
424
425 for (rt_index = 0; rt_index < rtable_size; rt_index++)
426 {
427 RangeTblEntry *rte = rt_fetch(rt_index + 1, parse->rtable);
428 Relation relation;
429
430 /* We only care about relation RTEs. */
431 if (rte->rtekind != RTE_RELATION)
432 continue;
433
434 /*
435 * We need not lock the relation since it was already locked by the
436 * rewriter.
437 */
438 relation = table_open(rte->relid, NoLock);
439
440 /*
441 * Check to see if the relation actually has any children; if not,
442 * clear the inh flag so we can treat it as a plain base relation.
443 *
444 * Note: this could give a false-positive result, if the rel once had
445 * children but no longer does. We used to be able to clear rte->inh
446 * later on when we discovered that, but no more; we have to handle
447 * such cases as full-fledged inheritance.
448 */
449 if (rte->inh)
450 rte->inh = relation->rd_rel->relhassubclass;
451
452 /*
453 * Check to see if the relation has any column not-null constraints;
454 * if so, retrieve the constraint information and store it in a
455 * relation OID based hash table.
456 */
458
459 /*
460 * Check to see if the relation has any virtual generated columns; if
461 * so, replace all Var nodes in the query that reference these columns
462 * with the generation expressions.
463 */
465 rte, rt_index + 1,
466 relation);
467
468 table_close(relation, NoLock);
469 }
470
471 return parse;
472}
473
474/*
475 * expand_virtual_generated_columns
476 * Expand virtual generated columns for the given relation.
477 *
478 * This checks whether the given relation has any virtual generated columns,
479 * and if so, replaces all Var nodes in the query that reference those columns
480 * with their generation expressions.
481 *
482 * Returns a modified copy of the query tree if the relation contains virtual
483 * generated columns.
484 */
485static Query *
487 RangeTblEntry *rte, int rt_index,
488 Relation relation)
489{
490 TupleDesc tupdesc;
491
492 /* Only normal relations can have virtual generated columns */
493 Assert(rte->rtekind == RTE_RELATION);
494
495 tupdesc = RelationGetDescr(relation);
496 if (tupdesc->constr && tupdesc->constr->has_generated_virtual)
497 {
498 List *tlist = NIL;
500
501 for (int i = 0; i < tupdesc->natts; i++)
502 {
503 Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
504 TargetEntry *tle;
505
506 if (attr->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
507 {
508 Node *defexpr;
509
510 defexpr = build_generation_expression(relation, i + 1);
511 ChangeVarNodes(defexpr, 1, rt_index, 0);
512
513 tle = makeTargetEntry((Expr *) defexpr, i + 1, 0, false);
514 tlist = lappend(tlist, tle);
515 }
516 else
517 {
518 Var *var;
519
520 var = makeVar(rt_index,
521 i + 1,
522 attr->atttypid,
523 attr->atttypmod,
524 attr->attcollation,
525 0);
526
527 tle = makeTargetEntry((Expr *) var, i + 1, 0, false);
528 tlist = lappend(tlist, tle);
529 }
530 }
531
532 Assert(list_length(tlist) > 0);
533 Assert(!rte->lateral);
534
535 /*
536 * The relation's targetlist items are now in the appropriate form to
537 * insert into the query, except that we may need to wrap them in
538 * PlaceHolderVars. Set up required context data for
539 * pullup_replace_vars.
540 */
541 rvcontext.root = root;
542 rvcontext.targetlist = tlist;
543 rvcontext.target_rte = rte;
544 rvcontext.result_relation = parse->resultRelation;
545 /* won't need these values */
546 rvcontext.relids = NULL;
547 rvcontext.nullinfo = NULL;
548 /* pass NULL for outer_hasSubLinks */
549 rvcontext.outer_hasSubLinks = NULL;
550 rvcontext.varno = rt_index;
551 /* this flag will be set below, if needed */
552 rvcontext.wrap_option = REPLACE_WRAP_NONE;
553 /* initialize cache array with indexes 0 .. length(tlist) */
554 rvcontext.rv_cache = palloc0((list_length(tlist) + 1) *
555 sizeof(Node *));
556
557 /*
558 * If the query uses grouping sets, we need a PlaceHolderVar for each
559 * expression of the relation's targetlist items. (See comments in
560 * pull_up_simple_subquery().)
561 */
562 if (parse->groupingSets)
563 rvcontext.wrap_option = REPLACE_WRAP_ALL;
564
565 /*
566 * Apply pullup variable replacement throughout the query tree.
567 */
568 parse = (Query *) pullup_replace_vars((Node *) parse, &rvcontext);
569 }
570
571 return parse;
572}
573
574/*
575 * replace_empty_jointree
576 * If the Query's jointree is empty, replace it with a dummy RTE_RESULT
577 * relation.
578 *
579 * By doing this, we can avoid a bunch of corner cases that formerly existed
580 * for SELECTs with omitted FROM clauses. An example is that a subquery
581 * with empty jointree previously could not be pulled up, because that would
582 * have resulted in an empty relid set, making the subquery not uniquely
583 * identifiable for join or PlaceHolderVar processing.
584 *
585 * Unlike most other functions in this file, this function doesn't recurse;
586 * we rely on other processing to invoke it on sub-queries at suitable times.
587 */
588void
590{
591 RangeTblEntry *rte;
592 Index rti;
593 RangeTblRef *rtr;
594
595 /* Nothing to do if jointree is already nonempty */
596 if (parse->jointree->fromlist != NIL)
597 return;
598
599 /* We mustn't change it in the top level of a setop tree, either */
600 if (parse->setOperations)
601 return;
602
603 /* Create suitable RTE */
604 rte = makeNode(RangeTblEntry);
605 rte->rtekind = RTE_RESULT;
606 rte->eref = makeAlias("*RESULT*", NIL);
607
608 /* Add it to rangetable */
609 parse->rtable = lappend(parse->rtable, rte);
610 rti = list_length(parse->rtable);
611
612 /* And jam a reference into the jointree */
613 rtr = makeNode(RangeTblRef);
614 rtr->rtindex = rti;
615 parse->jointree->fromlist = list_make1(rtr);
616}
617
618/*
619 * pull_up_sublinks
620 * Attempt to pull up ANY and EXISTS SubLinks to be treated as
621 * semijoins or anti-semijoins.
622 *
623 * A clause "foo op ANY (sub-SELECT)" can be processed by pulling the
624 * sub-SELECT up to become a rangetable entry and treating the implied
625 * comparisons as quals of a semijoin. However, this optimization *only*
626 * works at the top level of WHERE or a JOIN/ON clause, because we cannot
627 * distinguish whether the ANY ought to return FALSE or NULL in cases
628 * involving NULL inputs. Also, in an outer join's ON clause we can only
629 * do this if the sublink is degenerate (ie, references only the nullable
630 * side of the join). In that case it is legal to push the semijoin
631 * down into the nullable side of the join. If the sublink references any
632 * nonnullable-side variables then it would have to be evaluated as part
633 * of the outer join, which makes things way too complicated.
634 *
635 * Under similar conditions, EXISTS and NOT EXISTS clauses can be handled
636 * by pulling up the sub-SELECT and creating a semijoin or anti-semijoin.
637 *
638 * This routine searches for such clauses and does the necessary parsetree
639 * transformations if any are found.
640 *
641 * This routine has to run before preprocess_expression(), so the quals
642 * clauses are not yet reduced to implicit-AND format, and are not guaranteed
643 * to be AND/OR-flat either. That means we need to recursively search through
644 * explicit AND clauses. We stop as soon as we hit a non-AND item.
645 */
646void
648{
649 Node *jtnode;
650 Relids relids;
651
652 /* Begin recursion through the jointree */
654 (Node *) root->parse->jointree,
655 &relids);
656
657 /*
658 * root->parse->jointree must always be a FromExpr, so insert a dummy one
659 * if we got a bare RangeTblRef or JoinExpr out of the recursion.
660 */
661 if (IsA(jtnode, FromExpr))
662 root->parse->jointree = (FromExpr *) jtnode;
663 else
664 root->parse->jointree = makeFromExpr(list_make1(jtnode), NULL);
665}
666
667/*
668 * Recurse through jointree nodes for pull_up_sublinks()
669 *
670 * In addition to returning the possibly-modified jointree node, we return
671 * a relids set of the contained rels into *relids.
672 */
673static Node *
675 Relids *relids)
676{
677 /* Since this function recurses, it could be driven to stack overflow. */
679
680 if (jtnode == NULL)
681 {
682 *relids = NULL;
683 }
684 else if (IsA(jtnode, RangeTblRef))
685 {
686 int varno = ((RangeTblRef *) jtnode)->rtindex;
687
688 *relids = bms_make_singleton(varno);
689 /* jtnode is returned unmodified */
690 }
691 else if (IsA(jtnode, FromExpr))
692 {
693 FromExpr *f = (FromExpr *) jtnode;
694 List *newfromlist = NIL;
695 Relids frelids = NULL;
696 FromExpr *newf;
697 Node *jtlink;
698 ListCell *l;
699
700 /* First, recurse to process children and collect their relids */
701 foreach(l, f->fromlist)
702 {
703 Node *newchild;
704 Relids childrelids;
705
707 lfirst(l),
708 &childrelids);
709 newfromlist = lappend(newfromlist, newchild);
710 frelids = bms_join(frelids, childrelids);
711 }
712 /* Build the replacement FromExpr; no quals yet */
713 newf = makeFromExpr(newfromlist, NULL);
714 /* Set up a link representing the rebuilt jointree */
715 jtlink = (Node *) newf;
716 /* Now process qual --- all children are available for use */
718 &jtlink, frelids,
719 NULL, NULL);
720
721 /*
722 * Note that the result will be either newf, or a stack of JoinExprs
723 * with newf at the base. We rely on subsequent optimization steps to
724 * flatten this and rearrange the joins as needed.
725 *
726 * Although we could include the pulled-up subqueries in the returned
727 * relids, there's no need since upper quals couldn't refer to their
728 * outputs anyway.
729 */
730 *relids = frelids;
731 jtnode = jtlink;
732 }
733 else if (IsA(jtnode, JoinExpr))
734 {
735 JoinExpr *j;
736 Relids leftrelids;
737 Relids rightrelids;
738 Node *jtlink;
739
740 /*
741 * Make a modifiable copy of join node, but don't bother copying its
742 * subnodes (yet).
743 */
744 j = (JoinExpr *) palloc(sizeof(JoinExpr));
745 memcpy(j, jtnode, sizeof(JoinExpr));
746 jtlink = (Node *) j;
747
748 /* Recurse to process children and collect their relids */
750 &leftrelids);
752 &rightrelids);
753
754 /*
755 * Now process qual, showing appropriate child relids as available,
756 * and attach any pulled-up jointree items at the right place. In the
757 * inner-join case we put new JoinExprs above the existing one (much
758 * as for a FromExpr-style join). In outer-join cases the new
759 * JoinExprs must go into the nullable side of the outer join. The
760 * point of the available_rels machinations is to ensure that we only
761 * pull up quals for which that's okay.
762 *
763 * We don't expect to see any pre-existing JOIN_SEMI, JOIN_ANTI,
764 * JOIN_RIGHT_SEMI, or JOIN_RIGHT_ANTI jointypes here.
765 */
766 switch (j->jointype)
767 {
768 case JOIN_INNER:
769 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
770 &jtlink,
771 bms_union(leftrelids,
772 rightrelids),
773 NULL, NULL);
774 break;
775 case JOIN_LEFT:
776 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
777 &j->rarg,
778 rightrelids,
779 NULL, NULL);
780 break;
781 case JOIN_FULL:
782 /* can't do anything with full-join quals */
783 break;
784 case JOIN_RIGHT:
785 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
786 &j->larg,
787 leftrelids,
788 NULL, NULL);
789 break;
790 default:
791 elog(ERROR, "unrecognized join type: %d",
792 (int) j->jointype);
793 break;
794 }
795
796 /*
797 * Although we could include the pulled-up subqueries in the returned
798 * relids, there's no need since upper quals couldn't refer to their
799 * outputs anyway. But we *do* need to include the join's own rtindex
800 * because we haven't yet collapsed join alias variables, so upper
801 * levels would mistakenly think they couldn't use references to this
802 * join.
803 */
804 *relids = bms_join(leftrelids, rightrelids);
805 if (j->rtindex)
806 *relids = bms_add_member(*relids, j->rtindex);
807 jtnode = jtlink;
808 }
809 else
810 elog(ERROR, "unrecognized node type: %d",
811 (int) nodeTag(jtnode));
812 return jtnode;
813}
814
815/*
816 * Recurse through top-level qual nodes for pull_up_sublinks()
817 *
818 * jtlink1 points to the link in the jointree where any new JoinExprs should
819 * be inserted if they reference available_rels1 (i.e., available_rels1
820 * denotes the relations present underneath jtlink1). Optionally, jtlink2 can
821 * point to a second link where new JoinExprs should be inserted if they
822 * reference available_rels2 (pass NULL for both those arguments if not used).
823 * Note that SubLinks referencing both sets of variables cannot be optimized.
824 * If we find multiple pull-up-able SubLinks, they'll get stacked onto jtlink1
825 * and/or jtlink2 in the order we encounter them. We rely on subsequent
826 * optimization to rearrange the stack if appropriate.
827 *
828 * Returns the replacement qual node, or NULL if the qual should be removed.
829 */
830static Node *
832 Node **jtlink1, Relids available_rels1,
833 Node **jtlink2, Relids available_rels2)
834{
835 if (node == NULL)
836 return NULL;
837 if (IsA(node, SubLink))
838 {
839 SubLink *sublink = (SubLink *) node;
840 JoinExpr *j;
841 Relids child_rels;
842
843 /* Is it a convertible ANY or EXISTS clause? */
844 if (sublink->subLinkType == ANY_SUBLINK)
845 {
846 ScalarArrayOpExpr *saop;
847
848 if ((saop = convert_VALUES_to_ANY(root,
849 sublink->testexpr,
850 (Query *) sublink->subselect)) != NULL)
851
852 /*
853 * The VALUES sequence was simplified. Nothing more to do
854 * here.
855 */
856 return (Node *) saop;
857
858 if ((j = convert_ANY_sublink_to_join(root, sublink,
859 available_rels1)) != NULL)
860 {
861 /* Yes; insert the new join node into the join tree */
862 j->larg = *jtlink1;
863 *jtlink1 = (Node *) j;
864 /* Recursively process pulled-up jointree nodes */
866 j->rarg,
867 &child_rels);
868
869 /*
870 * Now recursively process the pulled-up quals. Any inserted
871 * joins can get stacked onto either j->larg or j->rarg,
872 * depending on which rels they reference.
873 */
875 j->quals,
876 &j->larg,
877 available_rels1,
878 &j->rarg,
879 child_rels);
880 /* Return NULL representing constant TRUE */
881 return NULL;
882 }
883 if (available_rels2 != NULL &&
885 available_rels2)) != NULL)
886 {
887 /* Yes; insert the new join node into the join tree */
888 j->larg = *jtlink2;
889 *jtlink2 = (Node *) j;
890 /* Recursively process pulled-up jointree nodes */
892 j->rarg,
893 &child_rels);
894
895 /*
896 * Now recursively process the pulled-up quals. Any inserted
897 * joins can get stacked onto either j->larg or j->rarg,
898 * depending on which rels they reference.
899 */
901 j->quals,
902 &j->larg,
903 available_rels2,
904 &j->rarg,
905 child_rels);
906 /* Return NULL representing constant TRUE */
907 return NULL;
908 }
909 }
910 else if (sublink->subLinkType == EXISTS_SUBLINK)
911 {
912 if ((j = convert_EXISTS_sublink_to_join(root, sublink, false,
913 available_rels1)) != NULL)
914 {
915 /* Yes; insert the new join node into the join tree */
916 j->larg = *jtlink1;
917 *jtlink1 = (Node *) j;
918 /* Recursively process pulled-up jointree nodes */
920 j->rarg,
921 &child_rels);
922
923 /*
924 * Now recursively process the pulled-up quals. Any inserted
925 * joins can get stacked onto either j->larg or j->rarg,
926 * depending on which rels they reference.
927 */
929 j->quals,
930 &j->larg,
931 available_rels1,
932 &j->rarg,
933 child_rels);
934 /* Return NULL representing constant TRUE */
935 return NULL;
936 }
937 if (available_rels2 != NULL &&
938 (j = convert_EXISTS_sublink_to_join(root, sublink, false,
939 available_rels2)) != NULL)
940 {
941 /* Yes; insert the new join node into the join tree */
942 j->larg = *jtlink2;
943 *jtlink2 = (Node *) j;
944 /* Recursively process pulled-up jointree nodes */
946 j->rarg,
947 &child_rels);
948
949 /*
950 * Now recursively process the pulled-up quals. Any inserted
951 * joins can get stacked onto either j->larg or j->rarg,
952 * depending on which rels they reference.
953 */
955 j->quals,
956 &j->larg,
957 available_rels2,
958 &j->rarg,
959 child_rels);
960 /* Return NULL representing constant TRUE */
961 return NULL;
962 }
963 }
964 /* Else return it unmodified */
965 return node;
966 }
967 if (is_notclause(node))
968 {
969 /* If the immediate argument of NOT is EXISTS, try to convert */
970 SubLink *sublink = (SubLink *) get_notclausearg((Expr *) node);
971 JoinExpr *j;
972 Relids child_rels;
973
974 if (sublink && IsA(sublink, SubLink))
975 {
976 if (sublink->subLinkType == EXISTS_SUBLINK)
977 {
978 if ((j = convert_EXISTS_sublink_to_join(root, sublink, true,
979 available_rels1)) != NULL)
980 {
981 /* Yes; insert the new join node into the join tree */
982 j->larg = *jtlink1;
983 *jtlink1 = (Node *) j;
984 /* Recursively process pulled-up jointree nodes */
986 j->rarg,
987 &child_rels);
988
989 /*
990 * Now recursively process the pulled-up quals. Because
991 * we are underneath a NOT, we can't pull up sublinks that
992 * reference the left-hand stuff, but it's still okay to
993 * pull up sublinks referencing j->rarg.
994 */
996 j->quals,
997 &j->rarg,
998 child_rels,
999 NULL, NULL);
1000 /* Return NULL representing constant TRUE */
1001 return NULL;
1002 }
1003 if (available_rels2 != NULL &&
1004 (j = convert_EXISTS_sublink_to_join(root, sublink, true,
1005 available_rels2)) != NULL)
1006 {
1007 /* Yes; insert the new join node into the join tree */
1008 j->larg = *jtlink2;
1009 *jtlink2 = (Node *) j;
1010 /* Recursively process pulled-up jointree nodes */
1012 j->rarg,
1013 &child_rels);
1014
1015 /*
1016 * Now recursively process the pulled-up quals. Because
1017 * we are underneath a NOT, we can't pull up sublinks that
1018 * reference the left-hand stuff, but it's still okay to
1019 * pull up sublinks referencing j->rarg.
1020 */
1022 j->quals,
1023 &j->rarg,
1024 child_rels,
1025 NULL, NULL);
1026 /* Return NULL representing constant TRUE */
1027 return NULL;
1028 }
1029 }
1030 }
1031 /* Else return it unmodified */
1032 return node;
1033 }
1034 if (is_andclause(node))
1035 {
1036 /* Recurse into AND clause */
1037 List *newclauses = NIL;
1038 ListCell *l;
1039
1040 foreach(l, ((BoolExpr *) node)->args)
1041 {
1042 Node *oldclause = (Node *) lfirst(l);
1043 Node *newclause;
1044
1046 oldclause,
1047 jtlink1,
1048 available_rels1,
1049 jtlink2,
1050 available_rels2);
1051 if (newclause)
1052 newclauses = lappend(newclauses, newclause);
1053 }
1054 /* We might have got back fewer clauses than we started with */
1055 if (newclauses == NIL)
1056 return NULL;
1057 else if (list_length(newclauses) == 1)
1058 return (Node *) linitial(newclauses);
1059 else
1060 return (Node *) make_andclause(newclauses);
1061 }
1062 /* Stop if not an AND */
1063 return node;
1064}
1065
1066/*
1067 * preprocess_function_rtes
1068 * Constant-simplify any FUNCTION RTEs in the FROM clause, and then
1069 * attempt to "inline" any that are set-returning functions.
1070 *
1071 * If an RTE_FUNCTION rtable entry invokes a set-returning function that
1072 * contains just a simple SELECT, we can convert the rtable entry to an
1073 * RTE_SUBQUERY entry exposing the SELECT directly. This is especially
1074 * useful if the subquery can then be "pulled up" for further optimization,
1075 * but we do it even if not, to reduce executor overhead.
1076 *
1077 * This has to be done before we have started to do any optimization of
1078 * subqueries, else any such steps wouldn't get applied to subqueries
1079 * obtained via inlining. However, we do it after pull_up_sublinks
1080 * so that we can inline any functions used in SubLink subselects.
1081 *
1082 * The reason for applying const-simplification at this stage is that
1083 * (a) we'd need to do it anyway to inline a SRF, and (b) by doing it now,
1084 * we can be sure that pull_up_constant_function() will see constants
1085 * if there are constants to be seen. This approach also guarantees
1086 * that every FUNCTION RTE has been const-simplified, allowing planner.c's
1087 * preprocess_expression() to skip doing it again.
1088 *
1089 * Like most of the planner, this feels free to scribble on its input data
1090 * structure.
1091 */
1092void
1094{
1095 ListCell *rt;
1096
1097 foreach(rt, root->parse->rtable)
1098 {
1099 RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
1100
1101 if (rte->rtekind == RTE_FUNCTION)
1102 {
1103 Query *funcquery;
1104
1105 /* Apply const-simplification */
1106 rte->functions = (List *)
1108
1109 /* Check safety of expansion, and expand if possible */
1110 funcquery = inline_set_returning_function(root, rte);
1111 if (funcquery)
1112 {
1113 /* Successful expansion, convert the RTE to a subquery */
1114 rte->rtekind = RTE_SUBQUERY;
1115 rte->subquery = funcquery;
1116 rte->security_barrier = false;
1117
1118 /*
1119 * Clear fields that should not be set in a subquery RTE.
1120 * However, we leave rte->functions filled in for the moment,
1121 * in case makeWholeRowVar needs to consult it. We'll clear
1122 * it in setrefs.c (see add_rte_to_flat_rtable) so that this
1123 * abuse of the data structure doesn't escape the planner.
1124 */
1125 rte->funcordinality = false;
1126 }
1127 }
1128 }
1129}
1130
1131/*
1132 * pull_up_subqueries
1133 * Look for subqueries in the rangetable that can be pulled up into
1134 * the parent query. If the subquery has no special features like
1135 * grouping/aggregation then we can merge it into the parent's jointree.
1136 * Also, subqueries that are simple UNION ALL structures can be
1137 * converted into "append relations".
1138 */
1139void
1141{
1142 /* Top level of jointree must always be a FromExpr */
1143 Assert(IsA(root->parse->jointree, FromExpr));
1144 /* Recursion starts with no containing join nor appendrel */
1145 root->parse->jointree = (FromExpr *)
1146 pull_up_subqueries_recurse(root, (Node *) root->parse->jointree,
1147 NULL, NULL);
1148 /* We should still have a FromExpr */
1149 Assert(IsA(root->parse->jointree, FromExpr));
1150}
1151
1152/*
1153 * pull_up_subqueries_recurse
1154 * Recursive guts of pull_up_subqueries.
1155 *
1156 * This recursively processes the jointree and returns a modified jointree.
1157 *
1158 * If this jointree node is within either side of an outer join, then
1159 * lowest_outer_join references the lowest such JoinExpr node; otherwise
1160 * it is NULL. We use this to constrain the effects of LATERAL subqueries.
1161 *
1162 * If we are looking at a member subquery of an append relation,
1163 * containing_appendrel describes that relation; else it is NULL.
1164 * This forces use of the PlaceHolderVar mechanism for all non-Var targetlist
1165 * items, and puts some additional restrictions on what can be pulled up.
1166 *
1167 * A tricky aspect of this code is that if we pull up a subquery we have
1168 * to replace Vars that reference the subquery's outputs throughout the
1169 * parent query, including quals attached to jointree nodes above the one
1170 * we are currently processing! We handle this by being careful to maintain
1171 * validity of the jointree structure while recursing, in the following sense:
1172 * whenever we recurse, all qual expressions in the tree must be reachable
1173 * from the top level, in case the recursive call needs to modify them.
1174 *
1175 * Notice also that we can't turn pullup_replace_vars loose on the whole
1176 * jointree, because it'd return a mutated copy of the tree; we have to
1177 * invoke it just on the quals, instead. This behavior is what makes it
1178 * reasonable to pass lowest_outer_join as a pointer rather than some
1179 * more-indirect way of identifying the lowest OJ. Likewise, we don't
1180 * replace append_rel_list members but only their substructure, so the
1181 * containing_appendrel reference is safe to use.
1182 */
1183static Node *
1185 JoinExpr *lowest_outer_join,
1186 AppendRelInfo *containing_appendrel)
1187{
1188 /* Since this function recurses, it could be driven to stack overflow. */
1190 /* Also, since it's a bit expensive, let's check for query cancel. */
1192
1193 Assert(jtnode != NULL);
1194 if (IsA(jtnode, RangeTblRef))
1195 {
1196 int varno = ((RangeTblRef *) jtnode)->rtindex;
1197 RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable);
1198
1199 /*
1200 * Is this a subquery RTE, and if so, is the subquery simple enough to
1201 * pull up?
1202 *
1203 * If we are looking at an append-relation member, we can't pull it up
1204 * unless is_safe_append_member says so.
1205 */
1206 if (rte->rtekind == RTE_SUBQUERY &&
1207 is_simple_subquery(root, rte->subquery, rte, lowest_outer_join) &&
1208 (containing_appendrel == NULL ||
1210 return pull_up_simple_subquery(root, jtnode, rte,
1211 lowest_outer_join,
1212 containing_appendrel);
1213
1214 /*
1215 * Alternatively, is it a simple UNION ALL subquery? If so, flatten
1216 * into an "append relation".
1217 *
1218 * It's safe to do this regardless of whether this query is itself an
1219 * appendrel member. (If you're thinking we should try to flatten the
1220 * two levels of appendrel together, you're right; but we handle that
1221 * in set_append_rel_pathlist, not here.)
1222 */
1223 if (rte->rtekind == RTE_SUBQUERY &&
1225 return pull_up_simple_union_all(root, jtnode, rte);
1226
1227 /*
1228 * Or perhaps it's a simple VALUES RTE?
1229 *
1230 * We don't allow VALUES pullup below an outer join nor into an
1231 * appendrel (such cases are impossible anyway at the moment).
1232 */
1233 if (rte->rtekind == RTE_VALUES &&
1234 lowest_outer_join == NULL &&
1235 containing_appendrel == NULL &&
1236 is_simple_values(root, rte))
1237 return pull_up_simple_values(root, jtnode, rte);
1238
1239 /*
1240 * Or perhaps it's a FUNCTION RTE that we could inline?
1241 */
1242 if (rte->rtekind == RTE_FUNCTION)
1243 return pull_up_constant_function(root, jtnode, rte,
1244 containing_appendrel);
1245
1246 /* Otherwise, do nothing at this node. */
1247 }
1248 else if (IsA(jtnode, FromExpr))
1249 {
1250 FromExpr *f = (FromExpr *) jtnode;
1251 ListCell *l;
1252
1253 Assert(containing_appendrel == NULL);
1254 /* Recursively transform all the child nodes */
1255 foreach(l, f->fromlist)
1256 {
1258 lowest_outer_join,
1259 NULL);
1260 }
1261 }
1262 else if (IsA(jtnode, JoinExpr))
1263 {
1264 JoinExpr *j = (JoinExpr *) jtnode;
1265
1266 Assert(containing_appendrel == NULL);
1267 /* Recurse, being careful to tell myself when inside outer join */
1268 switch (j->jointype)
1269 {
1270 case JOIN_INNER:
1271 j->larg = pull_up_subqueries_recurse(root, j->larg,
1272 lowest_outer_join,
1273 NULL);
1274 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1275 lowest_outer_join,
1276 NULL);
1277 break;
1278 case JOIN_LEFT:
1279 case JOIN_SEMI:
1280 case JOIN_ANTI:
1281 j->larg = pull_up_subqueries_recurse(root, j->larg,
1282 j,
1283 NULL);
1284 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1285 j,
1286 NULL);
1287 break;
1288 case JOIN_FULL:
1289 j->larg = pull_up_subqueries_recurse(root, j->larg,
1290 j,
1291 NULL);
1292 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1293 j,
1294 NULL);
1295 break;
1296 case JOIN_RIGHT:
1297 j->larg = pull_up_subqueries_recurse(root, j->larg,
1298 j,
1299 NULL);
1300 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1301 j,
1302 NULL);
1303 break;
1304 default:
1305 elog(ERROR, "unrecognized join type: %d",
1306 (int) j->jointype);
1307 break;
1308 }
1309 }
1310 else
1311 elog(ERROR, "unrecognized node type: %d",
1312 (int) nodeTag(jtnode));
1313 return jtnode;
1314}
1315
1316/*
1317 * pull_up_simple_subquery
1318 * Attempt to pull up a single simple subquery.
1319 *
1320 * jtnode is a RangeTblRef that has been tentatively identified as a simple
1321 * subquery by pull_up_subqueries. We return the replacement jointree node,
1322 * or jtnode itself if we determine that the subquery can't be pulled up
1323 * after all.
1324 *
1325 * rte is the RangeTblEntry referenced by jtnode. Remaining parameters are
1326 * as for pull_up_subqueries_recurse.
1327 */
1328static Node *
1330 JoinExpr *lowest_outer_join,
1331 AppendRelInfo *containing_appendrel)
1332{
1333 Query *parse = root->parse;
1334 int varno = ((RangeTblRef *) jtnode)->rtindex;
1335 Query *subquery;
1336 PlannerInfo *subroot;
1337 int rtoffset;
1339 ListCell *lc;
1340
1341 /*
1342 * Make a modifiable copy of the subquery to hack on, so that the RTE will
1343 * be left unchanged in case we decide below that we can't pull it up
1344 * after all.
1345 */
1346 subquery = copyObject(rte->subquery);
1347
1348 /*
1349 * Create a PlannerInfo data structure for this subquery.
1350 *
1351 * NOTE: the next few steps should match the first processing in
1352 * subquery_planner(). Can we refactor to avoid code duplication, or
1353 * would that just make things uglier?
1354 */
1355 subroot = makeNode(PlannerInfo);
1356 subroot->parse = subquery;
1357 subroot->glob = root->glob;
1358 subroot->query_level = root->query_level;
1359 subroot->parent_root = root->parent_root;
1360 subroot->plan_params = NIL;
1361 subroot->outer_params = NULL;
1362 subroot->planner_cxt = CurrentMemoryContext;
1363 subroot->init_plans = NIL;
1364 subroot->cte_plan_ids = NIL;
1365 subroot->multiexpr_params = NIL;
1366 subroot->join_domains = NIL;
1367 subroot->eq_classes = NIL;
1368 subroot->ec_merging_done = false;
1369 subroot->last_rinfo_serial = 0;
1370 subroot->all_result_relids = NULL;
1371 subroot->leaf_result_relids = NULL;
1372 subroot->append_rel_list = NIL;
1373 subroot->row_identity_vars = NIL;
1374 subroot->rowMarks = NIL;
1375 memset(subroot->upper_rels, 0, sizeof(subroot->upper_rels));
1376 memset(subroot->upper_targets, 0, sizeof(subroot->upper_targets));
1377 subroot->processed_groupClause = NIL;
1378 subroot->processed_distinctClause = NIL;
1379 subroot->processed_tlist = NIL;
1380 subroot->update_colnos = NIL;
1381 subroot->grouping_map = NULL;
1382 subroot->minmax_aggs = NIL;
1383 subroot->qual_security_level = 0;
1384 subroot->placeholdersFrozen = false;
1385 subroot->hasRecursion = false;
1386 subroot->wt_param_id = -1;
1387 subroot->non_recursive_path = NULL;
1388 /* We don't currently need a top JoinDomain for the subroot */
1389
1390 /* No CTEs to worry about */
1391 Assert(subquery->cteList == NIL);
1392
1393 /*
1394 * Scan the rangetable for relation RTEs and retrieve the necessary
1395 * catalog information for each relation. Using this information, clear
1396 * the inh flag for any relation that has no children, collect not-null
1397 * attribute numbers for any relation that has column not-null
1398 * constraints, and expand virtual generated columns for any relation that
1399 * contains them.
1400 */
1401 subquery = subroot->parse = preprocess_relation_rtes(subroot);
1402
1403 /*
1404 * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so
1405 * that we don't need so many special cases to deal with that situation.
1406 */
1407 replace_empty_jointree(subquery);
1408
1409 /*
1410 * Pull up any SubLinks within the subquery's quals, so that we don't
1411 * leave unoptimized SubLinks behind.
1412 */
1413 if (subquery->hasSubLinks)
1414 pull_up_sublinks(subroot);
1415
1416 /*
1417 * Similarly, preprocess its function RTEs to inline any set-returning
1418 * functions in its rangetable.
1419 */
1420 preprocess_function_rtes(subroot);
1421
1422 /*
1423 * Recursively pull up the subquery's subqueries, so that
1424 * pull_up_subqueries' processing is complete for its jointree and
1425 * rangetable.
1426 *
1427 * Note: it's okay that the subquery's recursion starts with NULL for
1428 * containing-join info, even if we are within an outer join in the upper
1429 * query; the lower query starts with a clean slate for outer-join
1430 * semantics. Likewise, we needn't pass down appendrel state.
1431 */
1432 pull_up_subqueries(subroot);
1433
1434 /*
1435 * Now we must recheck whether the subquery is still simple enough to pull
1436 * up. If not, abandon processing it.
1437 *
1438 * We don't really need to recheck all the conditions involved, but it's
1439 * easier just to keep this "if" looking the same as the one in
1440 * pull_up_subqueries_recurse.
1441 */
1442 if (is_simple_subquery(root, subquery, rte, lowest_outer_join) &&
1443 (containing_appendrel == NULL || is_safe_append_member(subquery)))
1444 {
1445 /* good to go */
1446 }
1447 else
1448 {
1449 /*
1450 * Give up, return unmodified RangeTblRef.
1451 *
1452 * Note: The work we just did will be redone when the subquery gets
1453 * planned on its own. Perhaps we could avoid that by storing the
1454 * modified subquery back into the rangetable, but I'm not gonna risk
1455 * it now.
1456 */
1457 return jtnode;
1458 }
1459
1460 /*
1461 * We must flatten any join alias Vars in the subquery's targetlist,
1462 * because pulling up the subquery's subqueries might have changed their
1463 * expansions into arbitrary expressions, which could affect
1464 * pullup_replace_vars' decisions about whether PlaceHolderVar wrappers
1465 * are needed for tlist entries. (Likely it'd be better to do
1466 * flatten_join_alias_vars on the whole query tree at some earlier stage,
1467 * maybe even in the rewriter; but for now let's just fix this case here.)
1468 */
1469 subquery->targetList = (List *)
1470 flatten_join_alias_vars(subroot, subroot->parse,
1471 (Node *) subquery->targetList);
1472
1473 /*
1474 * Adjust level-0 varnos in subquery so that we can append its rangetable
1475 * to upper query's. We have to fix the subquery's append_rel_list as
1476 * well.
1477 */
1478 rtoffset = list_length(parse->rtable);
1479 OffsetVarNodes((Node *) subquery, rtoffset, 0);
1480 OffsetVarNodes((Node *) subroot->append_rel_list, rtoffset, 0);
1481
1482 /*
1483 * Upper-level vars in subquery are now one level closer to their parent
1484 * than before.
1485 */
1486 IncrementVarSublevelsUp((Node *) subquery, -1, 1);
1487 IncrementVarSublevelsUp((Node *) subroot->append_rel_list, -1, 1);
1488
1489 /*
1490 * The subquery's targetlist items are now in the appropriate form to
1491 * insert into the top query, except that we may need to wrap them in
1492 * PlaceHolderVars. Set up required context data for pullup_replace_vars.
1493 * (Note that we should include the subquery's inner joins in relids,
1494 * since it may include join alias vars referencing them.)
1495 */
1496 rvcontext.root = root;
1497 rvcontext.targetlist = subquery->targetList;
1498 rvcontext.target_rte = rte;
1499 rvcontext.result_relation = 0;
1500 if (rte->lateral)
1501 {
1502 rvcontext.relids = get_relids_in_jointree((Node *) subquery->jointree,
1503 true, true);
1504 rvcontext.nullinfo = get_nullingrels(parse);
1505 }
1506 else /* won't need these values */
1507 {
1508 rvcontext.relids = NULL;
1509 rvcontext.nullinfo = NULL;
1510 }
1511 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
1512 rvcontext.varno = varno;
1513 /* this flag will be set below, if needed */
1514 rvcontext.wrap_option = REPLACE_WRAP_NONE;
1515 /* initialize cache array with indexes 0 .. length(tlist) */
1516 rvcontext.rv_cache = palloc0((list_length(subquery->targetList) + 1) *
1517 sizeof(Node *));
1518
1519 /*
1520 * If the parent query uses grouping sets, we need a PlaceHolderVar for
1521 * each expression of the subquery's targetlist items. This ensures that
1522 * expressions retain their separate identity so that they will match
1523 * grouping set columns when appropriate. (It'd be sufficient to wrap
1524 * values used in grouping set columns, and do so only in non-aggregated
1525 * portions of the tlist and havingQual, but that would require a lot of
1526 * infrastructure that pullup_replace_vars hasn't currently got.)
1527 */
1528 if (parse->groupingSets)
1529 rvcontext.wrap_option = REPLACE_WRAP_ALL;
1530
1531 /*
1532 * Replace all of the top query's references to the subquery's outputs
1533 * with copies of the adjusted subtlist items, being careful not to
1534 * replace any of the jointree structure.
1535 */
1537 containing_appendrel);
1538
1539 /*
1540 * If the subquery had a LATERAL marker, propagate that to any of its
1541 * child RTEs that could possibly now contain lateral cross-references.
1542 * The children might or might not contain any actual lateral
1543 * cross-references, but we have to mark the pulled-up child RTEs so that
1544 * later planner stages will check for such.
1545 */
1546 if (rte->lateral)
1547 {
1548 foreach(lc, subquery->rtable)
1549 {
1550 RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(lc);
1551
1552 switch (child_rte->rtekind)
1553 {
1554 case RTE_RELATION:
1555 if (child_rte->tablesample)
1556 child_rte->lateral = true;
1557 break;
1558 case RTE_SUBQUERY:
1559 case RTE_FUNCTION:
1560 case RTE_VALUES:
1561 case RTE_TABLEFUNC:
1562 child_rte->lateral = true;
1563 break;
1564 case RTE_JOIN:
1565 case RTE_CTE:
1567 case RTE_RESULT:
1568 case RTE_GROUP:
1569 /* these can't contain any lateral references */
1570 break;
1571 }
1572 }
1573 }
1574
1575 /*
1576 * Now append the adjusted rtable entries and their perminfos to upper
1577 * query. (We hold off until after fixing the upper rtable entries; no
1578 * point in running that code on the subquery ones too.)
1579 */
1580 CombineRangeTables(&parse->rtable, &parse->rteperminfos,
1581 subquery->rtable, subquery->rteperminfos);
1582
1583 /*
1584 * Pull up any FOR UPDATE/SHARE markers, too. (OffsetVarNodes already
1585 * adjusted the marker rtindexes, so just concat the lists.)
1586 */
1587 parse->rowMarks = list_concat(parse->rowMarks, subquery->rowMarks);
1588
1589 /*
1590 * We also have to fix the relid sets of any PlaceHolderVar nodes in the
1591 * parent query. (This could perhaps be done by pullup_replace_vars(),
1592 * but it seems cleaner to use two passes.) Note in particular that any
1593 * PlaceHolderVar nodes just created by pullup_replace_vars() will be
1594 * adjusted, so having created them with the subquery's varno is correct.
1595 *
1596 * Likewise, relids appearing in AppendRelInfo nodes have to be fixed. We
1597 * already checked that this won't require introducing multiple subrelids
1598 * into the single-slot AppendRelInfo structs.
1599 */
1600 if (root->glob->lastPHId != 0 || root->append_rel_list)
1601 {
1602 Relids subrelids;
1603
1604 subrelids = get_relids_in_jointree((Node *) subquery->jointree,
1605 true, false);
1606 if (root->glob->lastPHId != 0)
1607 substitute_phv_relids((Node *) parse, varno, subrelids);
1608 fix_append_rel_relids(root, varno, subrelids);
1609 }
1610
1611 /*
1612 * And now add subquery's AppendRelInfos to our list.
1613 */
1614 root->append_rel_list = list_concat(root->append_rel_list,
1615 subroot->append_rel_list);
1616
1617 /*
1618 * We don't have to do the equivalent bookkeeping for outer-join info,
1619 * because that hasn't been set up yet. placeholder_list likewise.
1620 */
1621 Assert(root->join_info_list == NIL);
1622 Assert(subroot->join_info_list == NIL);
1623 Assert(root->placeholder_list == NIL);
1624 Assert(subroot->placeholder_list == NIL);
1625
1626 /*
1627 * We no longer need the RTE's copy of the subquery's query tree. Getting
1628 * rid of it saves nothing in particular so far as this level of query is
1629 * concerned; but if this query level is in turn pulled up into a parent,
1630 * we'd waste cycles copying the now-unused query tree.
1631 */
1632 rte->subquery = NULL;
1633
1634 /*
1635 * Miscellaneous housekeeping.
1636 *
1637 * Although replace_rte_variables() faithfully updated parse->hasSubLinks
1638 * if it copied any SubLinks out of the subquery's targetlist, we still
1639 * could have SubLinks added to the query in the expressions of FUNCTION
1640 * and VALUES RTEs copied up from the subquery. So it's necessary to copy
1641 * subquery->hasSubLinks anyway. Perhaps this can be improved someday.
1642 */
1643 parse->hasSubLinks |= subquery->hasSubLinks;
1644
1645 /* If subquery had any RLS conditions, now main query does too */
1646 parse->hasRowSecurity |= subquery->hasRowSecurity;
1647
1648 /*
1649 * subquery won't be pulled up if it hasAggs, hasWindowFuncs, or
1650 * hasTargetSRFs, so no work needed on those flags
1651 */
1652
1653 /*
1654 * Return the adjusted subquery jointree to replace the RangeTblRef entry
1655 * in parent's jointree; or, if the FromExpr is degenerate, just return
1656 * its single member.
1657 */
1658 Assert(IsA(subquery->jointree, FromExpr));
1659 Assert(subquery->jointree->fromlist != NIL);
1660 if (subquery->jointree->quals == NULL &&
1661 list_length(subquery->jointree->fromlist) == 1)
1662 return (Node *) linitial(subquery->jointree->fromlist);
1663
1664 return (Node *) subquery->jointree;
1665}
1666
1667/*
1668 * pull_up_simple_union_all
1669 * Pull up a single simple UNION ALL subquery.
1670 *
1671 * jtnode is a RangeTblRef that has been identified as a simple UNION ALL
1672 * subquery by pull_up_subqueries. We pull up the leaf subqueries and
1673 * build an "append relation" for the union set. The result value is just
1674 * jtnode, since we don't actually need to change the query jointree.
1675 */
1676static Node *
1678{
1679 int varno = ((RangeTblRef *) jtnode)->rtindex;
1680 Query *subquery = rte->subquery;
1681 int rtoffset = list_length(root->parse->rtable);
1682 List *rtable;
1683
1684 /*
1685 * Make a modifiable copy of the subquery's rtable, so we can adjust
1686 * upper-level Vars in it. There are no such Vars in the setOperations
1687 * tree proper, so fixing the rtable should be sufficient.
1688 */
1689 rtable = copyObject(subquery->rtable);
1690
1691 /*
1692 * Upper-level vars in subquery are now one level closer to their parent
1693 * than before. We don't have to worry about offsetting varnos, though,
1694 * because the UNION leaf queries can't cross-reference each other.
1695 */
1696 IncrementVarSublevelsUp_rtable(rtable, -1, 1);
1697
1698 /*
1699 * If the UNION ALL subquery had a LATERAL marker, propagate that to all
1700 * its children. The individual children might or might not contain any
1701 * actual lateral cross-references, but we have to mark the pulled-up
1702 * child RTEs so that later planner stages will check for such.
1703 */
1704 if (rte->lateral)
1705 {
1706 ListCell *rt;
1707
1708 foreach(rt, rtable)
1709 {
1710 RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt);
1711
1712 Assert(child_rte->rtekind == RTE_SUBQUERY);
1713 child_rte->lateral = true;
1714 }
1715 }
1716
1717 /*
1718 * Append child RTEs (and their perminfos) to parent rtable.
1719 */
1720 CombineRangeTables(&root->parse->rtable, &root->parse->rteperminfos,
1721 rtable, subquery->rteperminfos);
1722
1723 /*
1724 * Recursively scan the subquery's setOperations tree and add
1725 * AppendRelInfo nodes for leaf subqueries to the parent's
1726 * append_rel_list. Also apply pull_up_subqueries to the leaf subqueries.
1727 */
1728 Assert(subquery->setOperations);
1729 pull_up_union_leaf_queries(subquery->setOperations, root, varno, subquery,
1730 rtoffset);
1731
1732 /*
1733 * Mark the parent as an append relation.
1734 */
1735 rte->inh = true;
1736
1737 return jtnode;
1738}
1739
1740/*
1741 * pull_up_union_leaf_queries -- recursive guts of pull_up_simple_union_all
1742 *
1743 * Build an AppendRelInfo for each leaf query in the setop tree, and then
1744 * apply pull_up_subqueries to the leaf query.
1745 *
1746 * Note that setOpQuery is the Query containing the setOp node, whose tlist
1747 * contains references to all the setop output columns. When called from
1748 * pull_up_simple_union_all, this is *not* the same as root->parse, which is
1749 * the parent Query we are pulling up into.
1750 *
1751 * parentRTindex is the appendrel parent's index in root->parse->rtable.
1752 *
1753 * The child RTEs have already been copied to the parent. childRToffset
1754 * tells us where in the parent's range table they were copied. When called
1755 * from flatten_simple_union_all, childRToffset is 0 since the child RTEs
1756 * were already in root->parse->rtable and no RT index adjustment is needed.
1757 */
1758static void
1760 Query *setOpQuery, int childRToffset)
1761{
1762 if (IsA(setOp, RangeTblRef))
1763 {
1764 RangeTblRef *rtr = (RangeTblRef *) setOp;
1765 int childRTindex;
1766 AppendRelInfo *appinfo;
1767
1768 /*
1769 * Calculate the index in the parent's range table
1770 */
1771 childRTindex = childRToffset + rtr->rtindex;
1772
1773 /*
1774 * Build a suitable AppendRelInfo, and attach to parent's list.
1775 */
1776 appinfo = makeNode(AppendRelInfo);
1777 appinfo->parent_relid = parentRTindex;
1778 appinfo->child_relid = childRTindex;
1779 appinfo->parent_reltype = InvalidOid;
1780 appinfo->child_reltype = InvalidOid;
1781 make_setop_translation_list(setOpQuery, childRTindex, appinfo);
1782 appinfo->parent_reloid = InvalidOid;
1783 root->append_rel_list = lappend(root->append_rel_list, appinfo);
1784
1785 /*
1786 * Recursively apply pull_up_subqueries to the new child RTE. (We
1787 * must build the AppendRelInfo first, because this will modify it;
1788 * indeed, that's the only part of the upper query where Vars
1789 * referencing childRTindex can exist at this point.)
1790 *
1791 * Note that we can pass NULL for containing-join info even if we're
1792 * actually under an outer join, because the child's expressions
1793 * aren't going to propagate up to the join. Also, we ignore the
1794 * possibility that pull_up_subqueries_recurse() returns a different
1795 * jointree node than what we pass it; if it does, the important thing
1796 * is that it replaced the child relid in the AppendRelInfo node.
1797 */
1798 rtr = makeNode(RangeTblRef);
1799 rtr->rtindex = childRTindex;
1800 (void) pull_up_subqueries_recurse(root, (Node *) rtr,
1801 NULL, appinfo);
1802 }
1803 else if (IsA(setOp, SetOperationStmt))
1804 {
1805 SetOperationStmt *op = (SetOperationStmt *) setOp;
1806
1807 /* Recurse to reach leaf queries */
1808 pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery,
1809 childRToffset);
1810 pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery,
1811 childRToffset);
1812 }
1813 else
1814 {
1815 elog(ERROR, "unrecognized node type: %d",
1816 (int) nodeTag(setOp));
1817 }
1818}
1819
1820/*
1821 * make_setop_translation_list
1822 * Build the list of translations from parent Vars to child Vars for
1823 * a UNION ALL member. (At this point it's just a simple list of
1824 * referencing Vars, but if we succeed in pulling up the member
1825 * subquery, the Vars will get replaced by pulled-up expressions.)
1826 * Also create the rather trivial reverse-translation array.
1827 */
1828static void
1830 AppendRelInfo *appinfo)
1831{
1832 List *vars = NIL;
1833 AttrNumber *pcolnos;
1834 ListCell *l;
1835
1836 /* Initialize reverse-translation array with all entries zero */
1837 /* (entries for resjunk columns will stay that way) */
1838 appinfo->num_child_cols = list_length(query->targetList);
1839 appinfo->parent_colnos = pcolnos =
1840 (AttrNumber *) palloc0(appinfo->num_child_cols * sizeof(AttrNumber));
1841
1842 foreach(l, query->targetList)
1843 {
1844 TargetEntry *tle = (TargetEntry *) lfirst(l);
1845
1846 if (tle->resjunk)
1847 continue;
1848
1849 vars = lappend(vars, makeVarFromTargetEntry(newvarno, tle));
1850 pcolnos[tle->resno - 1] = tle->resno;
1851 }
1852
1853 appinfo->translated_vars = vars;
1854}
1855
1856/*
1857 * is_simple_subquery
1858 * Check a subquery in the range table to see if it's simple enough
1859 * to pull up into the parent query.
1860 *
1861 * rte is the RTE_SUBQUERY RangeTblEntry that contained the subquery.
1862 * (Note subquery is not necessarily equal to rte->subquery; it could be a
1863 * processed copy of that.)
1864 * lowest_outer_join is the lowest outer join above the subquery, or NULL.
1865 */
1866static bool
1868 JoinExpr *lowest_outer_join)
1869{
1870 /*
1871 * Let's just make sure it's a valid subselect ...
1872 */
1873 if (!IsA(subquery, Query) ||
1874 subquery->commandType != CMD_SELECT)
1875 elog(ERROR, "subquery is bogus");
1876
1877 /*
1878 * Can't currently pull up a query with setops (unless it's simple UNION
1879 * ALL, which is handled by a different code path). Maybe after querytree
1880 * redesign...
1881 */
1882 if (subquery->setOperations)
1883 return false;
1884
1885 /*
1886 * Can't pull up a subquery involving grouping, aggregation, SRFs,
1887 * sorting, limiting, or WITH. (XXX WITH could possibly be allowed later)
1888 *
1889 * We also don't pull up a subquery that has explicit FOR UPDATE/SHARE
1890 * clauses, because pullup would cause the locking to occur semantically
1891 * higher than it should. Implicit FOR UPDATE/SHARE is okay because in
1892 * that case the locking was originally declared in the upper query
1893 * anyway.
1894 */
1895 if (subquery->hasAggs ||
1896 subquery->hasWindowFuncs ||
1897 subquery->hasTargetSRFs ||
1898 subquery->groupClause ||
1899 subquery->groupingSets ||
1900 subquery->havingQual ||
1901 subquery->sortClause ||
1902 subquery->distinctClause ||
1903 subquery->limitOffset ||
1904 subquery->limitCount ||
1905 subquery->hasForUpdate ||
1906 subquery->cteList)
1907 return false;
1908
1909 /*
1910 * Don't pull up if the RTE represents a security-barrier view; we
1911 * couldn't prevent information leakage once the RTE's Vars are scattered
1912 * about in the upper query.
1913 */
1914 if (rte->security_barrier)
1915 return false;
1916
1917 /*
1918 * If the subquery is LATERAL, check for pullup restrictions from that.
1919 */
1920 if (rte->lateral)
1921 {
1922 bool restricted;
1923 Relids safe_upper_varnos;
1924
1925 /*
1926 * The subquery's WHERE and JOIN/ON quals mustn't contain any lateral
1927 * references to rels outside a higher outer join (including the case
1928 * where the outer join is within the subquery itself). In such a
1929 * case, pulling up would result in a situation where we need to
1930 * postpone quals from below an outer join to above it, which is
1931 * probably completely wrong and in any case is a complication that
1932 * doesn't seem worth addressing at the moment.
1933 */
1934 if (lowest_outer_join != NULL)
1935 {
1936 restricted = true;
1937 safe_upper_varnos = get_relids_in_jointree((Node *) lowest_outer_join,
1938 true, true);
1939 }
1940 else
1941 {
1942 restricted = false;
1943 safe_upper_varnos = NULL; /* doesn't matter */
1944 }
1945
1947 (Node *) subquery->jointree,
1948 restricted, safe_upper_varnos))
1949 return false;
1950
1951 /*
1952 * If there's an outer join above the LATERAL subquery, also disallow
1953 * pullup if the subquery's targetlist has any references to rels
1954 * outside the outer join, since these might get pulled into quals
1955 * above the subquery (but in or below the outer join) and then lead
1956 * to qual-postponement issues similar to the case checked for above.
1957 * (We wouldn't need to prevent pullup if no such references appear in
1958 * outer-query quals, but we don't have enough info here to check
1959 * that. Also, maybe this restriction could be removed if we forced
1960 * such refs to be wrapped in PlaceHolderVars, even when they're below
1961 * the nearest outer join? But it's a pretty hokey usage, so not
1962 * clear this is worth sweating over.)
1963 *
1964 * If you change this, see also the comments about lateral references
1965 * in pullup_replace_vars_callback().
1966 */
1967 if (lowest_outer_join != NULL)
1968 {
1970 (Node *) subquery->targetList,
1971 1);
1972
1973 if (!bms_is_subset(lvarnos, safe_upper_varnos))
1974 return false;
1975 }
1976 }
1977
1978 /*
1979 * Don't pull up a subquery that has any volatile functions in its
1980 * targetlist. Otherwise we might introduce multiple evaluations of these
1981 * functions, if they get copied to multiple places in the upper query,
1982 * leading to surprising results. (Note: the PlaceHolderVar mechanism
1983 * doesn't quite guarantee single evaluation; else we could pull up anyway
1984 * and just wrap such items in PlaceHolderVars ...)
1985 */
1986 if (contain_volatile_functions((Node *) subquery->targetList))
1987 return false;
1988
1989 return true;
1990}
1991
1992/*
1993 * pull_up_simple_values
1994 * Pull up a single simple VALUES RTE.
1995 *
1996 * jtnode is a RangeTblRef that has been identified as a simple VALUES RTE
1997 * by pull_up_subqueries. We always return a RangeTblRef representing a
1998 * RESULT RTE to replace it (all failure cases should have been detected by
1999 * is_simple_values()). Actually, what we return is just jtnode, because
2000 * we replace the VALUES RTE in the rangetable with the RESULT RTE.
2001 *
2002 * rte is the RangeTblEntry referenced by jtnode. Because of the limited
2003 * possible usage of VALUES RTEs, we do not need the remaining parameters
2004 * of pull_up_subqueries_recurse.
2005 */
2006static Node *
2008{
2009 Query *parse = root->parse;
2010 int varno = ((RangeTblRef *) jtnode)->rtindex;
2011 List *values_list;
2012 List *tlist;
2013 AttrNumber attrno;
2015 ListCell *lc;
2016
2017 Assert(rte->rtekind == RTE_VALUES);
2018 Assert(list_length(rte->values_lists) == 1);
2019
2020 /*
2021 * Need a modifiable copy of the VALUES list to hack on, just in case it's
2022 * multiply referenced.
2023 */
2024 values_list = copyObject(linitial(rte->values_lists));
2025
2026 /*
2027 * The VALUES RTE can't contain any Vars of level zero, let alone any that
2028 * are join aliases, so no need to flatten join alias Vars.
2029 */
2030 Assert(!contain_vars_of_level((Node *) values_list, 0));
2031
2032 /*
2033 * Set up required context data for pullup_replace_vars. In particular,
2034 * we have to make the VALUES list look like a subquery targetlist.
2035 */
2036 tlist = NIL;
2037 attrno = 1;
2038 foreach(lc, values_list)
2039 {
2040 tlist = lappend(tlist,
2041 makeTargetEntry((Expr *) lfirst(lc),
2042 attrno,
2043 NULL,
2044 false));
2045 attrno++;
2046 }
2047 rvcontext.root = root;
2048 rvcontext.targetlist = tlist;
2049 rvcontext.target_rte = rte;
2050 rvcontext.result_relation = 0;
2051 rvcontext.relids = NULL; /* can't be any lateral references here */
2052 rvcontext.nullinfo = NULL;
2053 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
2054 rvcontext.varno = varno;
2055 rvcontext.wrap_option = REPLACE_WRAP_NONE;
2056 /* initialize cache array with indexes 0 .. length(tlist) */
2057 rvcontext.rv_cache = palloc0((list_length(tlist) + 1) *
2058 sizeof(Node *));
2059
2060 /*
2061 * Replace all of the top query's references to the RTE's outputs with
2062 * copies of the adjusted VALUES expressions, being careful not to replace
2063 * any of the jointree structure. We can assume there's no outer joins or
2064 * appendrels in the dummy Query that surrounds a VALUES RTE.
2065 */
2066 perform_pullup_replace_vars(root, &rvcontext, NULL);
2067
2068 /*
2069 * There should be no appendrels to fix, nor any outer joins and hence no
2070 * PlaceHolderVars.
2071 */
2072 Assert(root->append_rel_list == NIL);
2073 Assert(root->join_info_list == NIL);
2074 Assert(root->placeholder_list == NIL);
2075
2076 /*
2077 * Replace the VALUES RTE with a RESULT RTE. The VALUES RTE is the only
2078 * rtable entry in the current query level, so this is easy.
2079 */
2080 Assert(list_length(parse->rtable) == 1);
2081
2082 /* Create suitable RTE */
2083 rte = makeNode(RangeTblEntry);
2084 rte->rtekind = RTE_RESULT;
2085 rte->eref = makeAlias("*RESULT*", NIL);
2086
2087 /* Replace rangetable */
2088 parse->rtable = list_make1(rte);
2089
2090 /* We could manufacture a new RangeTblRef, but the one we have is fine */
2091 Assert(varno == 1);
2092
2093 return jtnode;
2094}
2095
2096/*
2097 * is_simple_values
2098 * Check a VALUES RTE in the range table to see if it's simple enough
2099 * to pull up into the parent query.
2100 *
2101 * rte is the RTE_VALUES RangeTblEntry to check.
2102 */
2103static bool
2105{
2106 Assert(rte->rtekind == RTE_VALUES);
2107
2108 /*
2109 * There must be exactly one VALUES list, else it's not semantically
2110 * correct to replace the VALUES RTE with a RESULT RTE, nor would we have
2111 * a unique set of expressions to substitute into the parent query.
2112 */
2113 if (list_length(rte->values_lists) != 1)
2114 return false;
2115
2116 /*
2117 * Because VALUES can't appear under an outer join (or at least, we won't
2118 * try to pull it up if it does), we need not worry about LATERAL, nor
2119 * about validity of PHVs for the VALUES' outputs.
2120 */
2121
2122 /*
2123 * Don't pull up a VALUES that contains any set-returning or volatile
2124 * functions. The considerations here are basically identical to the
2125 * restrictions on a pull-able subquery's targetlist.
2126 */
2129 return false;
2130
2131 /*
2132 * Do not pull up a VALUES that's not the only RTE in its parent query.
2133 * This is actually the only case that the parser will generate at the
2134 * moment, and assuming this is true greatly simplifies
2135 * pull_up_simple_values().
2136 */
2137 if (list_length(root->parse->rtable) != 1 ||
2138 rte != (RangeTblEntry *) linitial(root->parse->rtable))
2139 return false;
2140
2141 return true;
2142}
2143
2144/*
2145 * pull_up_constant_function
2146 * Pull up an RTE_FUNCTION expression that was simplified to a constant.
2147 *
2148 * jtnode is a RangeTblRef that has been identified as a FUNCTION RTE by
2149 * pull_up_subqueries. If its expression is just a Const, hoist that value
2150 * up into the parent query, and replace the RTE_FUNCTION with RTE_RESULT.
2151 *
2152 * In principle we could pull up any immutable expression, but we don't.
2153 * That might result in multiple evaluations of the expression, which could
2154 * be costly if it's not just a Const. Also, the main value of this is
2155 * to let the constant participate in further const-folding, and of course
2156 * that won't happen for a non-Const.
2157 *
2158 * The pulled-up value might need to be wrapped in a PlaceHolderVar if the
2159 * RTE is below an outer join or is part of an appendrel; the extra
2160 * parameters show whether that's needed.
2161 */
2162static Node *
2164 RangeTblEntry *rte,
2165 AppendRelInfo *containing_appendrel)
2166{
2167 Query *parse = root->parse;
2168 RangeTblFunction *rtf;
2169 TypeFuncClass functypclass;
2170 Oid funcrettype;
2171 TupleDesc tupdesc;
2173
2174 /* Fail if the RTE has ORDINALITY - we don't implement that here. */
2175 if (rte->funcordinality)
2176 return jtnode;
2177
2178 /* Fail if RTE isn't a single, simple Const expr */
2179 if (list_length(rte->functions) != 1)
2180 return jtnode;
2182 if (!IsA(rtf->funcexpr, Const))
2183 return jtnode;
2184
2185 /*
2186 * If the function's result is not a scalar, we punt. In principle we
2187 * could break the composite constant value apart into per-column
2188 * constants, but for now it seems not worth the work.
2189 */
2190 if (rtf->funccolcount != 1)
2191 return jtnode; /* definitely composite */
2192
2193 /* If it has a coldeflist, it certainly returns RECORD */
2194 if (rtf->funccolnames != NIL)
2195 return jtnode; /* must be a one-column RECORD type */
2196
2197 functypclass = get_expr_result_type(rtf->funcexpr,
2198 &funcrettype,
2199 &tupdesc);
2200 if (functypclass != TYPEFUNC_SCALAR)
2201 return jtnode; /* must be a one-column composite type */
2202
2203 /* Create context for applying pullup_replace_vars */
2204 rvcontext.root = root;
2205 rvcontext.targetlist = list_make1(makeTargetEntry((Expr *) rtf->funcexpr,
2206 1, /* resno */
2207 NULL, /* resname */
2208 false)); /* resjunk */
2209 rvcontext.target_rte = rte;
2210 rvcontext.result_relation = 0;
2211
2212 /*
2213 * Since this function was reduced to a Const, it doesn't contain any
2214 * lateral references, even if it's marked as LATERAL. This means we
2215 * don't need to fill relids or nullinfo.
2216 */
2217 rvcontext.relids = NULL;
2218 rvcontext.nullinfo = NULL;
2219
2220 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
2221 rvcontext.varno = ((RangeTblRef *) jtnode)->rtindex;
2222 /* this flag will be set below, if needed */
2223 rvcontext.wrap_option = REPLACE_WRAP_NONE;
2224 /* initialize cache array with indexes 0 .. length(tlist) */
2225 rvcontext.rv_cache = palloc0((list_length(rvcontext.targetlist) + 1) *
2226 sizeof(Node *));
2227
2228 /*
2229 * If the parent query uses grouping sets, we need a PlaceHolderVar for
2230 * each expression of the subquery's targetlist items. (See comments in
2231 * pull_up_simple_subquery().)
2232 */
2233 if (parse->groupingSets)
2234 rvcontext.wrap_option = REPLACE_WRAP_ALL;
2235
2236 /*
2237 * Replace all of the top query's references to the RTE's output with
2238 * copies of the funcexpr, being careful not to replace any of the
2239 * jointree structure.
2240 */
2242 containing_appendrel);
2243
2244 /*
2245 * We don't need to bother with changing PlaceHolderVars in the parent
2246 * query. Their references to the RT index are still good for now, and
2247 * will get removed later if we're able to drop the RTE_RESULT.
2248 */
2249
2250 /*
2251 * Convert the RTE to be RTE_RESULT type, signifying that we don't need to
2252 * scan it anymore, and zero out RTE_FUNCTION-specific fields. Also make
2253 * sure the RTE is not marked LATERAL, since elsewhere we don't expect
2254 * RTE_RESULTs to be LATERAL.
2255 */
2256 rte->rtekind = RTE_RESULT;
2257 rte->functions = NIL;
2258 rte->lateral = false;
2259
2260 /*
2261 * We can reuse the RangeTblRef node.
2262 */
2263 return jtnode;
2264}
2265
2266/*
2267 * is_simple_union_all
2268 * Check a subquery to see if it's a simple UNION ALL.
2269 *
2270 * We require all the setops to be UNION ALL (no mixing) and there can't be
2271 * any datatype coercions involved, ie, all the leaf queries must emit the
2272 * same datatypes.
2273 */
2274static bool
2276{
2277 SetOperationStmt *topop;
2278
2279 /* Let's just make sure it's a valid subselect ... */
2280 if (!IsA(subquery, Query) ||
2281 subquery->commandType != CMD_SELECT)
2282 elog(ERROR, "subquery is bogus");
2283
2284 /* Is it a set-operation query at all? */
2285 topop = castNode(SetOperationStmt, subquery->setOperations);
2286 if (!topop)
2287 return false;
2288
2289 /* Can't handle ORDER BY, LIMIT/OFFSET, locking, or WITH */
2290 if (subquery->sortClause ||
2291 subquery->limitOffset ||
2292 subquery->limitCount ||
2293 subquery->rowMarks ||
2294 subquery->cteList)
2295 return false;
2296
2297 /* Recursively check the tree of set operations */
2298 return is_simple_union_all_recurse((Node *) topop, subquery,
2299 topop->colTypes);
2300}
2301
2302static bool
2303is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes)
2304{
2305 /* Since this function recurses, it could be driven to stack overflow. */
2307
2308 if (IsA(setOp, RangeTblRef))
2309 {
2310 RangeTblRef *rtr = (RangeTblRef *) setOp;
2311 RangeTblEntry *rte = rt_fetch(rtr->rtindex, setOpQuery->rtable);
2312 Query *subquery = rte->subquery;
2313
2314 Assert(subquery != NULL);
2315
2316 /* Leaf nodes are OK if they match the toplevel column types */
2317 /* We don't have to compare typmods or collations here */
2318 return tlist_same_datatypes(subquery->targetList, colTypes, true);
2319 }
2320 else if (IsA(setOp, SetOperationStmt))
2321 {
2322 SetOperationStmt *op = (SetOperationStmt *) setOp;
2323
2324 /* Must be UNION ALL */
2325 if (op->op != SETOP_UNION || !op->all)
2326 return false;
2327
2328 /* Recurse to check inputs */
2329 return is_simple_union_all_recurse(op->larg, setOpQuery, colTypes) &&
2330 is_simple_union_all_recurse(op->rarg, setOpQuery, colTypes);
2331 }
2332 else
2333 {
2334 elog(ERROR, "unrecognized node type: %d",
2335 (int) nodeTag(setOp));
2336 return false; /* keep compiler quiet */
2337 }
2338}
2339
2340/*
2341 * is_safe_append_member
2342 * Check a subquery that is a leaf of a UNION ALL appendrel to see if it's
2343 * safe to pull up.
2344 */
2345static bool
2347{
2348 FromExpr *jtnode;
2349
2350 /*
2351 * It's only safe to pull up the child if its jointree contains exactly
2352 * one RTE, else the AppendRelInfo data structure breaks. The one base RTE
2353 * could be buried in several levels of FromExpr, however. Also, if the
2354 * child's jointree is completely empty, we can pull up because
2355 * pull_up_simple_subquery will insert a single RTE_RESULT RTE instead.
2356 *
2357 * Also, the child can't have any WHERE quals because there's no place to
2358 * put them in an appendrel. (This is a bit annoying...) If we didn't
2359 * need to check this, we'd just test whether get_relids_in_jointree()
2360 * yields a singleton set, to be more consistent with the coding of
2361 * fix_append_rel_relids().
2362 */
2363 jtnode = subquery->jointree;
2364 Assert(IsA(jtnode, FromExpr));
2365 /* Check the completely-empty case */
2366 if (jtnode->fromlist == NIL && jtnode->quals == NULL)
2367 return true;
2368 /* Check the more general case */
2369 while (IsA(jtnode, FromExpr))
2370 {
2371 if (jtnode->quals != NULL)
2372 return false;
2373 if (list_length(jtnode->fromlist) != 1)
2374 return false;
2375 jtnode = linitial(jtnode->fromlist);
2376 }
2377 if (!IsA(jtnode, RangeTblRef))
2378 return false;
2379
2380 return true;
2381}
2382
2383/*
2384 * jointree_contains_lateral_outer_refs
2385 * Check for disallowed lateral references in a jointree's quals
2386 *
2387 * If restricted is false, all level-1 Vars are allowed (but we still must
2388 * search the jointree, since it might contain outer joins below which there
2389 * will be restrictions). If restricted is true, return true when any qual
2390 * in the jointree contains level-1 Vars coming from outside the rels listed
2391 * in safe_upper_varnos.
2392 */
2393static bool
2395 bool restricted,
2396 Relids safe_upper_varnos)
2397{
2398 if (jtnode == NULL)
2399 return false;
2400 if (IsA(jtnode, RangeTblRef))
2401 return false;
2402 else if (IsA(jtnode, FromExpr))
2403 {
2404 FromExpr *f = (FromExpr *) jtnode;
2405 ListCell *l;
2406
2407 /* First, recurse to check child joins */
2408 foreach(l, f->fromlist)
2409 {
2411 lfirst(l),
2412 restricted,
2413 safe_upper_varnos))
2414 return true;
2415 }
2416
2417 /* Then check the top-level quals */
2418 if (restricted &&
2420 safe_upper_varnos))
2421 return true;
2422 }
2423 else if (IsA(jtnode, JoinExpr))
2424 {
2425 JoinExpr *j = (JoinExpr *) jtnode;
2426
2427 /*
2428 * If this is an outer join, we mustn't allow any upper lateral
2429 * references in or below it.
2430 */
2431 if (j->jointype != JOIN_INNER)
2432 {
2433 restricted = true;
2434 safe_upper_varnos = NULL;
2435 }
2436
2437 /* Check the child joins */
2439 j->larg,
2440 restricted,
2441 safe_upper_varnos))
2442 return true;
2444 j->rarg,
2445 restricted,
2446 safe_upper_varnos))
2447 return true;
2448
2449 /* Check the JOIN's qual clauses */
2450 if (restricted &&
2452 safe_upper_varnos))
2453 return true;
2454 }
2455 else
2456 elog(ERROR, "unrecognized node type: %d",
2457 (int) nodeTag(jtnode));
2458 return false;
2459}
2460
2461/*
2462 * Perform pullup_replace_vars everyplace it's needed in the query tree.
2463 *
2464 * Caller has already filled *rvcontext with data describing what to
2465 * substitute for Vars referencing the target subquery. In addition
2466 * we need the identity of the containing appendrel if any.
2467 */
2468static void
2470 pullup_replace_vars_context *rvcontext,
2471 AppendRelInfo *containing_appendrel)
2472{
2473 Query *parse = root->parse;
2474 ListCell *lc;
2475
2476 /*
2477 * If we are considering an appendrel child subquery (that is, a UNION ALL
2478 * member query that we're pulling up), then the only part of the upper
2479 * query that could reference the child yet is the translated_vars list of
2480 * the associated AppendRelInfo. Furthermore, we do not want to force use
2481 * of PHVs in the AppendRelInfo --- there isn't any outer join between.
2482 */
2483 if (containing_appendrel)
2484 {
2485 ReplaceWrapOption save_wrap_option = rvcontext->wrap_option;
2486
2487 rvcontext->wrap_option = REPLACE_WRAP_NONE;
2488 containing_appendrel->translated_vars = (List *)
2489 pullup_replace_vars((Node *) containing_appendrel->translated_vars,
2490 rvcontext);
2491 rvcontext->wrap_option = save_wrap_option;
2492 return;
2493 }
2494
2495 /*
2496 * Replace all of the top query's references to the subquery's outputs
2497 * with copies of the adjusted subtlist items, being careful not to
2498 * replace any of the jointree structure. (This'd be a lot cleaner if we
2499 * could use query_tree_mutator.) We have to use PHVs in the targetList,
2500 * returningList, and havingQual, since those are certainly above any
2501 * outer join. replace_vars_in_jointree tracks its location in the
2502 * jointree and uses PHVs or not appropriately.
2503 */
2504 parse->targetList = (List *)
2505 pullup_replace_vars((Node *) parse->targetList, rvcontext);
2506 parse->returningList = (List *)
2507 pullup_replace_vars((Node *) parse->returningList, rvcontext);
2508
2509 if (parse->onConflict)
2510 {
2511 parse->onConflict->onConflictSet = (List *)
2512 pullup_replace_vars((Node *) parse->onConflict->onConflictSet,
2513 rvcontext);
2514 parse->onConflict->onConflictWhere =
2515 pullup_replace_vars(parse->onConflict->onConflictWhere,
2516 rvcontext);
2517
2518 /*
2519 * We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist
2520 * can't contain any references to a subquery.
2521 */
2522 }
2523 if (parse->mergeActionList)
2524 {
2525 foreach(lc, parse->mergeActionList)
2526 {
2527 MergeAction *action = lfirst(lc);
2528
2529 action->qual = pullup_replace_vars(action->qual, rvcontext);
2530 action->targetList = (List *)
2531 pullup_replace_vars((Node *) action->targetList, rvcontext);
2532 }
2533 }
2534 parse->mergeJoinCondition = pullup_replace_vars(parse->mergeJoinCondition,
2535 rvcontext);
2536 replace_vars_in_jointree((Node *) parse->jointree, rvcontext);
2537 Assert(parse->setOperations == NULL);
2538 parse->havingQual = pullup_replace_vars(parse->havingQual, rvcontext);
2539
2540 /*
2541 * Replace references in the translated_vars lists of appendrels.
2542 */
2543 foreach(lc, root->append_rel_list)
2544 {
2545 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
2546
2547 appinfo->translated_vars = (List *)
2548 pullup_replace_vars((Node *) appinfo->translated_vars, rvcontext);
2549 }
2550
2551 /*
2552 * Replace references in the joinaliasvars lists of join RTEs and the
2553 * groupexprs list of group RTE.
2554 */
2555 foreach(lc, parse->rtable)
2556 {
2557 RangeTblEntry *otherrte = (RangeTblEntry *) lfirst(lc);
2558
2559 if (otherrte->rtekind == RTE_JOIN)
2560 otherrte->joinaliasvars = (List *)
2561 pullup_replace_vars((Node *) otherrte->joinaliasvars,
2562 rvcontext);
2563 else if (otherrte->rtekind == RTE_GROUP)
2564 otherrte->groupexprs = (List *)
2565 pullup_replace_vars((Node *) otherrte->groupexprs,
2566 rvcontext);
2567 }
2568}
2569
2570/*
2571 * Helper routine for perform_pullup_replace_vars: do pullup_replace_vars on
2572 * every expression in the jointree, without changing the jointree structure
2573 * itself. Ugly, but there's no other way...
2574 */
2575static void
2578{
2579 if (jtnode == NULL)
2580 return;
2581 if (IsA(jtnode, RangeTblRef))
2582 {
2583 /*
2584 * If the RangeTblRef refers to a LATERAL subquery (that isn't the
2585 * same subquery we're pulling up), it might contain references to the
2586 * target subquery, which we must replace. We drive this from the
2587 * jointree scan, rather than a scan of the rtable, so that we can
2588 * avoid processing no-longer-referenced RTEs.
2589 */
2590 int varno = ((RangeTblRef *) jtnode)->rtindex;
2591
2592 if (varno != context->varno) /* ignore target subquery itself */
2593 {
2594 RangeTblEntry *rte = rt_fetch(varno, context->root->parse->rtable);
2595
2596 Assert(rte != context->target_rte);
2597 if (rte->lateral)
2598 {
2599 switch (rte->rtekind)
2600 {
2601 case RTE_RELATION:
2602 /* shouldn't be marked LATERAL unless tablesample */
2603 Assert(rte->tablesample);
2606 context);
2607 break;
2608 case RTE_SUBQUERY:
2609 rte->subquery =
2611 context);
2612 break;
2613 case RTE_FUNCTION:
2614 rte->functions = (List *)
2616 context);
2617 break;
2618 case RTE_TABLEFUNC:
2619 rte->tablefunc = (TableFunc *)
2621 context);
2622 break;
2623 case RTE_VALUES:
2624 rte->values_lists = (List *)
2626 context);
2627 break;
2628 case RTE_JOIN:
2629 case RTE_CTE:
2631 case RTE_RESULT:
2632 case RTE_GROUP:
2633 /* these shouldn't be marked LATERAL */
2634 Assert(false);
2635 break;
2636 }
2637 }
2638 }
2639 }
2640 else if (IsA(jtnode, FromExpr))
2641 {
2642 FromExpr *f = (FromExpr *) jtnode;
2643 ListCell *l;
2644
2645 foreach(l, f->fromlist)
2646 replace_vars_in_jointree(lfirst(l), context);
2647 f->quals = pullup_replace_vars(f->quals, context);
2648 }
2649 else if (IsA(jtnode, JoinExpr))
2650 {
2651 JoinExpr *j = (JoinExpr *) jtnode;
2652 ReplaceWrapOption save_wrap_option = context->wrap_option;
2653
2654 replace_vars_in_jointree(j->larg, context);
2655 replace_vars_in_jointree(j->rarg, context);
2656
2657 /*
2658 * Use PHVs within the join quals of a full join for variable-free
2659 * expressions. Otherwise, we cannot identify which side of the join
2660 * a pulled-up variable-free expression came from, which can lead to
2661 * failure to make a plan at all because none of the quals appear to
2662 * be mergeable or hashable conditions.
2663 */
2664 if (j->jointype == JOIN_FULL)
2666
2667 j->quals = pullup_replace_vars(j->quals, context);
2668
2669 context->wrap_option = save_wrap_option;
2670 }
2671 else
2672 elog(ERROR, "unrecognized node type: %d",
2673 (int) nodeTag(jtnode));
2674}
2675
2676/*
2677 * Apply pullup variable replacement throughout an expression tree
2678 *
2679 * Returns a modified copy of the tree, so this can't be used where we
2680 * need to do in-place replacement.
2681 */
2682static Node *
2684{
2685 return replace_rte_variables(expr,
2686 context->varno, 0,
2688 context,
2689 context->outer_hasSubLinks);
2690}
2691
2692static Node *
2695{
2697 int varattno = var->varattno;
2698 bool need_phv;
2699 Node *newnode;
2700
2701 /* System columns are not replaced. */
2702 if (varattno < InvalidAttrNumber)
2703 return (Node *) copyObject(var);
2704
2705 /*
2706 * We need a PlaceHolderVar if the Var-to-be-replaced has nonempty
2707 * varnullingrels (unless we find below that the replacement expression is
2708 * a Var or PlaceHolderVar that we can just add the nullingrels to). We
2709 * also need one if the caller has instructed us that certain expression
2710 * replacements need to be wrapped for identification purposes.
2711 */
2712 need_phv = (var->varnullingrels != NULL) ||
2713 (rcon->wrap_option != REPLACE_WRAP_NONE);
2714
2715 /*
2716 * If PlaceHolderVars are needed, we cache the modified expressions in
2717 * rcon->rv_cache[]. This is not in hopes of any material speed gain
2718 * within this function, but to avoid generating identical PHVs with
2719 * different IDs. That would result in duplicate evaluations at runtime,
2720 * and possibly prevent optimizations that rely on recognizing different
2721 * references to the same subquery output as being equal(). So it's worth
2722 * a bit of extra effort to avoid it.
2723 *
2724 * The cached items have phlevelsup = 0 and phnullingrels = NULL; we'll
2725 * copy them and adjust those values for this reference site below.
2726 */
2727 if (need_phv &&
2728 varattno >= InvalidAttrNumber &&
2729 varattno <= list_length(rcon->targetlist) &&
2730 rcon->rv_cache[varattno] != NULL)
2731 {
2732 /* Just copy the entry and fall through to adjust phlevelsup etc */
2733 newnode = copyObject(rcon->rv_cache[varattno]);
2734 }
2735 else
2736 {
2737 /*
2738 * Generate the replacement expression. This takes care of expanding
2739 * wholerow references and dealing with non-default varreturningtype.
2740 */
2741 newnode = ReplaceVarFromTargetList(var,
2742 rcon->target_rte,
2743 rcon->targetlist,
2744 rcon->result_relation,
2746 0);
2747
2748 /* Insert PlaceHolderVar if needed */
2749 if (need_phv)
2750 {
2751 bool wrap;
2752
2753 if (rcon->wrap_option == REPLACE_WRAP_ALL)
2754 {
2755 /* Caller told us to wrap all expressions in a PlaceHolderVar */
2756 wrap = true;
2757 }
2758 else if (varattno == InvalidAttrNumber)
2759 {
2760 /*
2761 * Insert PlaceHolderVar for whole-tuple reference. Notice
2762 * that we are wrapping one PlaceHolderVar around the whole
2763 * RowExpr, rather than putting one around each element of the
2764 * row. This is because we need the expression to yield NULL,
2765 * not ROW(NULL,NULL,...) when it is forced to null by an
2766 * outer join.
2767 */
2768 wrap = true;
2769 }
2770 else if (newnode && IsA(newnode, Var) &&
2771 ((Var *) newnode)->varlevelsup == 0)
2772 {
2773 /*
2774 * Simple Vars always escape being wrapped, unless they are
2775 * lateral references to something outside the subquery being
2776 * pulled up and the referenced rel is not under the same
2777 * lowest nulling outer join.
2778 */
2779 wrap = false;
2780 if (rcon->target_rte->lateral &&
2781 !bms_is_member(((Var *) newnode)->varno, rcon->relids))
2782 {
2783 nullingrel_info *nullinfo = rcon->nullinfo;
2784 int lvarno = ((Var *) newnode)->varno;
2785
2786 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2787 if (!bms_is_subset(nullinfo->nullingrels[rcon->varno],
2788 nullinfo->nullingrels[lvarno]))
2789 wrap = true;
2790 }
2791 }
2792 else if (newnode && IsA(newnode, PlaceHolderVar) &&
2793 ((PlaceHolderVar *) newnode)->phlevelsup == 0)
2794 {
2795 /* The same rules apply for a PlaceHolderVar */
2796 wrap = false;
2797 if (rcon->target_rte->lateral &&
2798 !bms_is_subset(((PlaceHolderVar *) newnode)->phrels,
2799 rcon->relids))
2800 {
2801 nullingrel_info *nullinfo = rcon->nullinfo;
2802 Relids lvarnos = ((PlaceHolderVar *) newnode)->phrels;
2803 int lvarno;
2804
2805 lvarno = -1;
2806 while ((lvarno = bms_next_member(lvarnos, lvarno)) >= 0)
2807 {
2808 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2809 if (!bms_is_subset(nullinfo->nullingrels[rcon->varno],
2810 nullinfo->nullingrels[lvarno]))
2811 {
2812 wrap = true;
2813 break;
2814 }
2815 }
2816 }
2817 }
2818 else
2819 {
2820 /*
2821 * If the node contains Var(s) or PlaceHolderVar(s) of the
2822 * subquery being pulled up, or of rels that are under the
2823 * same lowest nulling outer join as the subquery, and does
2824 * not contain any non-strict constructs, then instead of
2825 * adding a PHV on top we can add the required nullingrels to
2826 * those Vars/PHVs. (This is fundamentally a generalization
2827 * of the above cases for bare Vars and PHVs.)
2828 *
2829 * This test is somewhat expensive, but it avoids pessimizing
2830 * the plan in cases where the nullingrels get removed again
2831 * later by outer join reduction.
2832 *
2833 * Note that we don't force wrapping of expressions containing
2834 * lateral references, so long as they also contain Vars/PHVs
2835 * of the subquery, or of rels that are under the same lowest
2836 * nulling outer join as the subquery. This is okay because
2837 * of the restriction to strict constructs: if those Vars/PHVs
2838 * have been forced to NULL by an outer join then the end
2839 * result of the expression will be NULL too, regardless of
2840 * the lateral references. So it's not necessary to force the
2841 * expression to be evaluated below the outer join. This can
2842 * be a very valuable optimization, because it may allow us to
2843 * avoid using a nested loop to pass the lateral reference
2844 * down.
2845 *
2846 * This analysis could be tighter: in particular, a non-strict
2847 * construct hidden within a lower-level PlaceHolderVar is not
2848 * reason to add another PHV. But for now it doesn't seem
2849 * worth the code to be more exact. This is also why it's
2850 * preferable to handle bare PHVs in the above branch, rather
2851 * than this branch. We also prefer to handle bare Vars in a
2852 * separate branch, as it's cheaper this way and parallels the
2853 * handling of PHVs.
2854 *
2855 * For a LATERAL subquery, we have to check the actual var
2856 * membership of the node, but if it's non-lateral then any
2857 * level-zero var must belong to the subquery.
2858 */
2859 bool contain_nullable_vars = false;
2860
2861 if (!rcon->target_rte->lateral)
2862 {
2863 if (contain_vars_of_level(newnode, 0))
2864 contain_nullable_vars = true;
2865 }
2866 else
2867 {
2868 Relids all_varnos;
2869
2870 all_varnos = pull_varnos(rcon->root, newnode);
2871 if (bms_overlap(all_varnos, rcon->relids))
2872 contain_nullable_vars = true;
2873 else
2874 {
2875 nullingrel_info *nullinfo = rcon->nullinfo;
2876 int varno;
2877
2878 varno = -1;
2879 while ((varno = bms_next_member(all_varnos, varno)) >= 0)
2880 {
2881 Assert(varno > 0 && varno <= nullinfo->rtlength);
2882 if (bms_is_subset(nullinfo->nullingrels[rcon->varno],
2883 nullinfo->nullingrels[varno]))
2884 {
2885 contain_nullable_vars = true;
2886 break;
2887 }
2888 }
2889 }
2890 }
2891
2892 if (contain_nullable_vars &&
2894 {
2895 /* No wrap needed */
2896 wrap = false;
2897 }
2898 else
2899 {
2900 /* Else wrap it in a PlaceHolderVar */
2901 wrap = true;
2902 }
2903 }
2904
2905 if (wrap)
2906 {
2907 newnode = (Node *)
2909 (Expr *) newnode,
2910 bms_make_singleton(rcon->varno));
2911
2912 /*
2913 * Cache it if possible (ie, if the attno is in range, which
2914 * it probably always should be).
2915 */
2916 if (varattno >= InvalidAttrNumber &&
2917 varattno <= list_length(rcon->targetlist))
2918 rcon->rv_cache[varattno] = copyObject(newnode);
2919 }
2920 }
2921 }
2922
2923 /* Propagate any varnullingrels into the replacement expression */
2924 if (var->varnullingrels != NULL)
2925 {
2926 if (IsA(newnode, Var))
2927 {
2928 Var *newvar = (Var *) newnode;
2929
2930 Assert(newvar->varlevelsup == 0);
2931 newvar->varnullingrels = bms_add_members(newvar->varnullingrels,
2932 var->varnullingrels);
2933 }
2934 else if (IsA(newnode, PlaceHolderVar))
2935 {
2936 PlaceHolderVar *newphv = (PlaceHolderVar *) newnode;
2937
2938 Assert(newphv->phlevelsup == 0);
2940 var->varnullingrels);
2941 }
2942 else
2943 {
2944 /*
2945 * There should be Vars/PHVs within the expression that we can
2946 * modify. Vars/PHVs of the subquery should have the full
2947 * var->varnullingrels added to them, but if there are lateral
2948 * references within the expression, those must be marked with
2949 * only the nullingrels that potentially apply to them. (This
2950 * corresponds to the fact that the expression will now be
2951 * evaluated at the join level of the Var that we are replacing:
2952 * the lateral references may have bubbled up through fewer outer
2953 * joins than the subquery's Vars have. Per the discussion above,
2954 * we'll still get the right answers.) That relid set could be
2955 * different for different lateral relations, so we have to do
2956 * this work for each one.
2957 *
2958 * (Currently, the restrictions in is_simple_subquery() mean that
2959 * at most we have to remove the lowest outer join's relid from
2960 * the nullingrels of a lateral reference. However, we might
2961 * relax those restrictions someday, so let's do this right.)
2962 */
2963 if (rcon->target_rte->lateral)
2964 {
2965 nullingrel_info *nullinfo = rcon->nullinfo;
2966 Relids lvarnos;
2967 int lvarno;
2968
2969 /*
2970 * Identify lateral varnos used within newnode. We must do
2971 * this before injecting var->varnullingrels into the tree.
2972 */
2973 lvarnos = pull_varnos(rcon->root, newnode);
2974 lvarnos = bms_del_members(lvarnos, rcon->relids);
2975 /* For each one, add relevant nullingrels if any */
2976 lvarno = -1;
2977 while ((lvarno = bms_next_member(lvarnos, lvarno)) >= 0)
2978 {
2979 Relids lnullingrels;
2980
2981 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2982 lnullingrels = bms_intersect(var->varnullingrels,
2983 nullinfo->nullingrels[lvarno]);
2984 if (!bms_is_empty(lnullingrels))
2985 newnode = add_nulling_relids(newnode,
2986 bms_make_singleton(lvarno),
2987 lnullingrels);
2988 }
2989 }
2990
2991 /* Finally, deal with Vars/PHVs of the subquery itself */
2992 newnode = add_nulling_relids(newnode,
2993 rcon->relids,
2994 var->varnullingrels);
2995 /* Assert we did put the varnullingrels into the expression */
2996 Assert(bms_is_subset(var->varnullingrels,
2997 pull_varnos(rcon->root, newnode)));
2998 }
2999 }
3000
3001 /* Must adjust varlevelsup if replaced Var is within a subquery */
3002 if (var->varlevelsup > 0)
3003 IncrementVarSublevelsUp(newnode, var->varlevelsup, 0);
3004
3005 return newnode;
3006}
3007
3008/*
3009 * Apply pullup variable replacement to a subquery
3010 *
3011 * This needs to be different from pullup_replace_vars() because
3012 * replace_rte_variables will think that it shouldn't increment sublevels_up
3013 * before entering the Query; so we need to call it with sublevels_up == 1.
3014 */
3015static Query *
3018{
3019 Assert(IsA(query, Query));
3020 return (Query *) replace_rte_variables((Node *) query,
3021 context->varno, 1,
3023 context,
3024 NULL);
3025}
3026
3027
3028/*
3029 * flatten_simple_union_all
3030 * Try to optimize top-level UNION ALL structure into an appendrel
3031 *
3032 * If a query's setOperations tree consists entirely of simple UNION ALL
3033 * operations, flatten it into an append relation, which we can process more
3034 * intelligently than the general setops case. Otherwise, do nothing.
3035 *
3036 * In most cases, this can succeed only for a top-level query, because for a
3037 * subquery in FROM, the parent query's invocation of pull_up_subqueries would
3038 * already have flattened the UNION via pull_up_simple_union_all. But there
3039 * are a few cases we can support here but not in that code path, for example
3040 * when the subquery also contains ORDER BY.
3041 */
3042void
3044{
3045 Query *parse = root->parse;
3046 SetOperationStmt *topop;
3047 Node *leftmostjtnode;
3048 int leftmostRTI;
3049 RangeTblEntry *leftmostRTE;
3050 int childRTI;
3051 RangeTblEntry *childRTE;
3052 RangeTblRef *rtr;
3053
3054 /* Shouldn't be called unless query has setops */
3055 topop = castNode(SetOperationStmt, parse->setOperations);
3056 Assert(topop);
3057
3058 /* Can't optimize away a recursive UNION */
3059 if (root->hasRecursion)
3060 return;
3061
3062 /*
3063 * Recursively check the tree of set operations. If not all UNION ALL
3064 * with identical column types, punt.
3065 */
3066 if (!is_simple_union_all_recurse((Node *) topop, parse, topop->colTypes))
3067 return;
3068
3069 /*
3070 * Locate the leftmost leaf query in the setops tree. The upper query's
3071 * Vars all refer to this RTE (see transformSetOperationStmt).
3072 */
3073 leftmostjtnode = topop->larg;
3074 while (leftmostjtnode && IsA(leftmostjtnode, SetOperationStmt))
3075 leftmostjtnode = ((SetOperationStmt *) leftmostjtnode)->larg;
3076 Assert(leftmostjtnode && IsA(leftmostjtnode, RangeTblRef));
3077 leftmostRTI = ((RangeTblRef *) leftmostjtnode)->rtindex;
3078 leftmostRTE = rt_fetch(leftmostRTI, parse->rtable);
3079 Assert(leftmostRTE->rtekind == RTE_SUBQUERY);
3080
3081 /*
3082 * Make a copy of the leftmost RTE and add it to the rtable. This copy
3083 * will represent the leftmost leaf query in its capacity as a member of
3084 * the appendrel. The original will represent the appendrel as a whole.
3085 * (We must do things this way because the upper query's Vars have to be
3086 * seen as referring to the whole appendrel.)
3087 */
3088 childRTE = copyObject(leftmostRTE);
3089 parse->rtable = lappend(parse->rtable, childRTE);
3090 childRTI = list_length(parse->rtable);
3091
3092 /* Modify the setops tree to reference the child copy */
3093 ((RangeTblRef *) leftmostjtnode)->rtindex = childRTI;
3094
3095 /* Modify the formerly-leftmost RTE to mark it as an appendrel parent */
3096 leftmostRTE->inh = true;
3097
3098 /*
3099 * Form a RangeTblRef for the appendrel, and insert it into FROM. The top
3100 * Query of a setops tree should have had an empty FromClause initially.
3101 */
3102 rtr = makeNode(RangeTblRef);
3103 rtr->rtindex = leftmostRTI;
3104 Assert(parse->jointree->fromlist == NIL);
3105 parse->jointree->fromlist = list_make1(rtr);
3106
3107 /*
3108 * Now pretend the query has no setops. We must do this before trying to
3109 * do subquery pullup, because of Assert in pull_up_simple_subquery.
3110 */
3111 parse->setOperations = NULL;
3112
3113 /*
3114 * Build AppendRelInfo information, and apply pull_up_subqueries to the
3115 * leaf queries of the UNION ALL. (We must do that now because they
3116 * weren't previously referenced by the jointree, and so were missed by
3117 * the main invocation of pull_up_subqueries.)
3118 */
3119 pull_up_union_leaf_queries((Node *) topop, root, leftmostRTI, parse, 0);
3120}
3121
3122
3123/*
3124 * reduce_outer_joins
3125 * Attempt to reduce outer joins to plain inner joins.
3126 *
3127 * The idea here is that given a query like
3128 * SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
3129 * we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE
3130 * is strict. The strict operator will always return NULL, causing the outer
3131 * WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's
3132 * columns. Therefore, there's no need for the join to produce null-extended
3133 * rows in the first place --- which makes it a plain join not an outer join.
3134 * (This scenario may not be very likely in a query written out by hand, but
3135 * it's reasonably likely when pushing quals down into complex views.)
3136 *
3137 * More generally, an outer join can be reduced in strength if there is a
3138 * strict qual above it in the qual tree that constrains a Var from the
3139 * nullable side of the join to be non-null. (For FULL joins this applies
3140 * to each side separately.)
3141 *
3142 * Another transformation we apply here is to recognize cases like
3143 * SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
3144 * If the join clause is strict for b.y, then only null-extended rows could
3145 * pass the upper WHERE, and we can conclude that what the query is really
3146 * specifying is an anti-semijoin. We change the join type from JOIN_LEFT
3147 * to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be
3148 * removed to prevent bogus selectivity calculations, but we leave it to
3149 * distribute_qual_to_rels to get rid of such clauses.
3150 *
3151 * Also, we get rid of JOIN_RIGHT cases by flipping them around to become
3152 * JOIN_LEFT. This saves some code here and in some later planner routines;
3153 * the main benefit is to reduce the number of jointypes that can appear in
3154 * SpecialJoinInfo nodes. Note that we can still generate Paths and Plans
3155 * that use JOIN_RIGHT (or JOIN_RIGHT_ANTI) by switching the inputs again.
3156 *
3157 * To ease recognition of strict qual clauses, we require this routine to be
3158 * run after expression preprocessing (i.e., qual canonicalization and JOIN
3159 * alias-var expansion).
3160 */
3161void
3163{
3166 ListCell *lc;
3167
3168 /*
3169 * To avoid doing strictness checks on more quals than necessary, we want
3170 * to stop descending the jointree as soon as there are no outer joins
3171 * below our current point. This consideration forces a two-pass process.
3172 * The first pass gathers information about which base rels appear below
3173 * each side of each join clause, and about whether there are outer
3174 * join(s) below each side of each join clause. The second pass examines
3175 * qual clauses and changes join types as it descends the tree.
3176 */
3177 state1 = reduce_outer_joins_pass1((Node *) root->parse->jointree);
3178
3179 /* planner.c shouldn't have called me if no outer joins */
3180 if (state1 == NULL || !state1->contains_outer)
3181 elog(ERROR, "so where are the outer joins?");
3182
3183 state2.inner_reduced = NULL;
3184 state2.partial_reduced = NIL;
3185
3186 reduce_outer_joins_pass2((Node *) root->parse->jointree,
3187 state1, &state2,
3188 root, NULL, NIL);
3189
3190 /*
3191 * If we successfully reduced the strength of any outer joins, we must
3192 * remove references to those joins as nulling rels. This is handled as
3193 * an additional pass, for simplicity and because we can handle all
3194 * fully-reduced joins in a single pass over the parse tree.
3195 */
3196 if (!bms_is_empty(state2.inner_reduced))
3197 {
3198 root->parse = (Query *)
3199 remove_nulling_relids((Node *) root->parse,
3200 state2.inner_reduced,
3201 NULL);
3202 /* There could be references in the append_rel_list, too */
3203 root->append_rel_list = (List *)
3204 remove_nulling_relids((Node *) root->append_rel_list,
3205 state2.inner_reduced,
3206 NULL);
3207 }
3208
3209 /*
3210 * Partially-reduced full joins have to be done one at a time, since
3211 * they'll each need a different setting of except_relids.
3212 */
3213 foreach(lc, state2.partial_reduced)
3214 {
3216 Relids full_join_relids = bms_make_singleton(statep->full_join_rti);
3217
3218 root->parse = (Query *)
3219 remove_nulling_relids((Node *) root->parse,
3220 full_join_relids,
3221 statep->unreduced_side);
3222 root->append_rel_list = (List *)
3223 remove_nulling_relids((Node *) root->append_rel_list,
3224 full_join_relids,
3225 statep->unreduced_side);
3226 }
3227}
3228
3229/*
3230 * reduce_outer_joins_pass1 - phase 1 data collection
3231 *
3232 * Returns a state node describing the given jointree node.
3233 */
3236{
3238
3241 result->relids = NULL;
3242 result->contains_outer = false;
3243 result->sub_states = NIL;
3244
3245 if (jtnode == NULL)
3246 return result;
3247 if (IsA(jtnode, RangeTblRef))
3248 {
3249 int varno = ((RangeTblRef *) jtnode)->rtindex;
3250
3251 result->relids = bms_make_singleton(varno);
3252 }
3253 else if (IsA(jtnode, FromExpr))
3254 {
3255 FromExpr *f = (FromExpr *) jtnode;
3256 ListCell *l;
3257
3258 foreach(l, f->fromlist)
3259 {
3261
3262 sub_state = reduce_outer_joins_pass1(lfirst(l));
3263 result->relids = bms_add_members(result->relids,
3264 sub_state->relids);
3265 result->contains_outer |= sub_state->contains_outer;
3266 result->sub_states = lappend(result->sub_states, sub_state);
3267 }
3268 }
3269 else if (IsA(jtnode, JoinExpr))
3270 {
3271 JoinExpr *j = (JoinExpr *) jtnode;
3273
3274 /* join's own RT index is not wanted in result->relids */
3275 if (IS_OUTER_JOIN(j->jointype))
3276 result->contains_outer = true;
3277
3278 sub_state = reduce_outer_joins_pass1(j->larg);
3279 result->relids = bms_add_members(result->relids,
3280 sub_state->relids);
3281 result->contains_outer |= sub_state->contains_outer;
3282 result->sub_states = lappend(result->sub_states, sub_state);
3283
3284 sub_state = reduce_outer_joins_pass1(j->rarg);
3285 result->relids = bms_add_members(result->relids,
3286 sub_state->relids);
3287 result->contains_outer |= sub_state->contains_outer;
3288 result->sub_states = lappend(result->sub_states, sub_state);
3289 }
3290 else
3291 elog(ERROR, "unrecognized node type: %d",
3292 (int) nodeTag(jtnode));
3293 return result;
3294}
3295
3296/*
3297 * reduce_outer_joins_pass2 - phase 2 processing
3298 *
3299 * jtnode: current jointree node
3300 * state1: state data collected by phase 1 for this node
3301 * state2: where to accumulate info about successfully-reduced joins
3302 * root: toplevel planner state
3303 * nonnullable_rels: set of base relids forced non-null by upper quals
3304 * forced_null_vars: multibitmapset of Vars forced null by upper quals
3305 *
3306 * Returns info in state2 about outer joins that were successfully simplified.
3307 * Joins that were fully reduced to inner joins are all added to
3308 * state2->inner_reduced. If a full join is reduced to a left join,
3309 * it needs its own entry in state2->partial_reduced, since that will
3310 * require custom processing to remove only the correct nullingrel markers.
3311 */
3312static void
3317 Relids nonnullable_rels,
3318 List *forced_null_vars)
3319{
3320 /*
3321 * pass 2 should never descend as far as an empty subnode or base rel,
3322 * because it's only called on subtrees marked as contains_outer.
3323 */
3324 if (jtnode == NULL)
3325 elog(ERROR, "reached empty jointree");
3326 if (IsA(jtnode, RangeTblRef))
3327 elog(ERROR, "reached base rel");
3328 else if (IsA(jtnode, FromExpr))
3329 {
3330 FromExpr *f = (FromExpr *) jtnode;
3331 ListCell *l;
3332 ListCell *s;
3333 Relids pass_nonnullable_rels;
3334 List *pass_forced_null_vars;
3335
3336 /* Scan quals to see if we can add any constraints */
3337 pass_nonnullable_rels = find_nonnullable_rels(f->quals);
3338 pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels,
3339 nonnullable_rels);
3340 pass_forced_null_vars = find_forced_null_vars(f->quals);
3341 pass_forced_null_vars = mbms_add_members(pass_forced_null_vars,
3342 forced_null_vars);
3343 /* And recurse --- but only into interesting subtrees */
3345 forboth(l, f->fromlist, s, state1->sub_states)
3346 {
3347 reduce_outer_joins_pass1_state *sub_state = lfirst(s);
3348
3349 if (sub_state->contains_outer)
3350 reduce_outer_joins_pass2(lfirst(l), sub_state,
3351 state2, root,
3352 pass_nonnullable_rels,
3353 pass_forced_null_vars);
3354 }
3355 bms_free(pass_nonnullable_rels);
3356 /* can't so easily clean up var lists, unfortunately */
3357 }
3358 else if (IsA(jtnode, JoinExpr))
3359 {
3360 JoinExpr *j = (JoinExpr *) jtnode;
3361 int rtindex = j->rtindex;
3362 JoinType jointype = j->jointype;
3363 reduce_outer_joins_pass1_state *left_state = linitial(state1->sub_states);
3364 reduce_outer_joins_pass1_state *right_state = lsecond(state1->sub_states);
3365
3366 /* Can we simplify this join? */
3367 switch (jointype)
3368 {
3369 case JOIN_INNER:
3370 break;
3371 case JOIN_LEFT:
3372 if (bms_overlap(nonnullable_rels, right_state->relids))
3373 jointype = JOIN_INNER;
3374 break;
3375 case JOIN_RIGHT:
3376 if (bms_overlap(nonnullable_rels, left_state->relids))
3377 jointype = JOIN_INNER;
3378 break;
3379 case JOIN_FULL:
3380 if (bms_overlap(nonnullable_rels, left_state->relids))
3381 {
3382 if (bms_overlap(nonnullable_rels, right_state->relids))
3383 jointype = JOIN_INNER;
3384 else
3385 {
3386 jointype = JOIN_LEFT;
3387 /* Also report partial reduction in state2 */
3388 report_reduced_full_join(state2, rtindex,
3389 right_state->relids);
3390 }
3391 }
3392 else
3393 {
3394 if (bms_overlap(nonnullable_rels, right_state->relids))
3395 {
3396 jointype = JOIN_RIGHT;
3397 /* Also report partial reduction in state2 */
3398 report_reduced_full_join(state2, rtindex,
3399 left_state->relids);
3400 }
3401 }
3402 break;
3403 case JOIN_SEMI:
3404 case JOIN_ANTI:
3405
3406 /*
3407 * These could only have been introduced by pull_up_sublinks,
3408 * so there's no way that upper quals could refer to their
3409 * righthand sides, and no point in checking. We don't expect
3410 * to see JOIN_RIGHT_SEMI or JOIN_RIGHT_ANTI yet.
3411 */
3412 break;
3413 default:
3414 elog(ERROR, "unrecognized join type: %d",
3415 (int) jointype);
3416 break;
3417 }
3418
3419 /*
3420 * Convert JOIN_RIGHT to JOIN_LEFT. Note that in the case where we
3421 * reduced JOIN_FULL to JOIN_RIGHT, this will mean the JoinExpr no
3422 * longer matches the internal ordering of any CoalesceExpr's built to
3423 * represent merged join variables. We don't care about that at
3424 * present, but be wary of it ...
3425 */
3426 if (jointype == JOIN_RIGHT)
3427 {
3428 Node *tmparg;
3429
3430 tmparg = j->larg;
3431 j->larg = j->rarg;
3432 j->rarg = tmparg;
3433 jointype = JOIN_LEFT;
3434 right_state = linitial(state1->sub_states);
3435 left_state = lsecond(state1->sub_states);
3436 }
3437
3438 /*
3439 * See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if
3440 * the join's own quals are strict for any var that was forced null by
3441 * higher qual levels. NOTE: there are other ways that we could
3442 * detect an anti-join, in particular if we were to check whether Vars
3443 * coming from the RHS must be non-null because of table constraints.
3444 * That seems complicated and expensive though (in particular, one
3445 * would have to be wary of lower outer joins). For the moment this
3446 * seems sufficient.
3447 */
3448 if (jointype == JOIN_LEFT)
3449 {
3450 List *nonnullable_vars;
3451 Bitmapset *overlap;
3452
3453 /* Find Vars in j->quals that must be non-null in joined rows */
3454 nonnullable_vars = find_nonnullable_vars(j->quals);
3455
3456 /*
3457 * It's not sufficient to check whether nonnullable_vars and
3458 * forced_null_vars overlap: we need to know if the overlap
3459 * includes any RHS variables.
3460 */
3461 overlap = mbms_overlap_sets(nonnullable_vars, forced_null_vars);
3462 if (bms_overlap(overlap, right_state->relids))
3463 jointype = JOIN_ANTI;
3464 }
3465
3466 /*
3467 * Apply the jointype change, if any, to both jointree node and RTE.
3468 * Also, if we changed an RTE to INNER, add its RTI to inner_reduced.
3469 */
3470 if (rtindex && jointype != j->jointype)
3471 {
3472 RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable);
3473
3474 Assert(rte->rtekind == RTE_JOIN);
3475 Assert(rte->jointype == j->jointype);
3476 rte->jointype = jointype;
3477 if (jointype == JOIN_INNER)
3478 state2->inner_reduced = bms_add_member(state2->inner_reduced,
3479 rtindex);
3480 }
3481 j->jointype = jointype;
3482
3483 /* Only recurse if there's more to do below here */
3484 if (left_state->contains_outer || right_state->contains_outer)
3485 {
3486 Relids local_nonnullable_rels;
3487 List *local_forced_null_vars;
3488 Relids pass_nonnullable_rels;
3489 List *pass_forced_null_vars;
3490
3491 /*
3492 * If this join is (now) inner, we can add any constraints its
3493 * quals provide to those we got from above. But if it is outer,
3494 * we can pass down the local constraints only into the nullable
3495 * side, because an outer join never eliminates any rows from its
3496 * non-nullable side. Also, there is no point in passing upper
3497 * constraints into the nullable side, since if there were any
3498 * we'd have been able to reduce the join. (In the case of upper
3499 * forced-null constraints, we *must not* pass them into the
3500 * nullable side --- they either applied here, or not.) The upshot
3501 * is that we pass either the local or the upper constraints,
3502 * never both, to the children of an outer join.
3503 *
3504 * Note that a SEMI join works like an inner join here: it's okay
3505 * to pass down both local and upper constraints. (There can't be
3506 * any upper constraints affecting its inner side, but it's not
3507 * worth having a separate code path to avoid passing them.)
3508 *
3509 * At a FULL join we just punt and pass nothing down --- is it
3510 * possible to be smarter?
3511 */
3512 if (jointype != JOIN_FULL)
3513 {
3514 local_nonnullable_rels = find_nonnullable_rels(j->quals);
3515 local_forced_null_vars = find_forced_null_vars(j->quals);
3516 if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
3517 {
3518 /* OK to merge upper and local constraints */
3519 local_nonnullable_rels = bms_add_members(local_nonnullable_rels,
3520 nonnullable_rels);
3521 local_forced_null_vars = mbms_add_members(local_forced_null_vars,
3522 forced_null_vars);
3523 }
3524 }
3525 else
3526 {
3527 /* no use in calculating these */
3528 local_nonnullable_rels = NULL;
3529 local_forced_null_vars = NIL;
3530 }
3531
3532 if (left_state->contains_outer)
3533 {
3534 if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
3535 {
3536 /* pass union of local and upper constraints */
3537 pass_nonnullable_rels = local_nonnullable_rels;
3538 pass_forced_null_vars = local_forced_null_vars;
3539 }
3540 else if (jointype != JOIN_FULL) /* ie, LEFT or ANTI */
3541 {
3542 /* can't pass local constraints to non-nullable side */
3543 pass_nonnullable_rels = nonnullable_rels;
3544 pass_forced_null_vars = forced_null_vars;
3545 }
3546 else
3547 {
3548 /* no constraints pass through JOIN_FULL */
3549 pass_nonnullable_rels = NULL;
3550 pass_forced_null_vars = NIL;
3551 }
3552 reduce_outer_joins_pass2(j->larg, left_state,
3553 state2, root,
3554 pass_nonnullable_rels,
3555 pass_forced_null_vars);
3556 }
3557
3558 if (right_state->contains_outer)
3559 {
3560 if (jointype != JOIN_FULL) /* ie, INNER/LEFT/SEMI/ANTI */
3561 {
3562 /* pass appropriate constraints, per comment above */
3563 pass_nonnullable_rels = local_nonnullable_rels;
3564 pass_forced_null_vars = local_forced_null_vars;
3565 }
3566 else
3567 {
3568 /* no constraints pass through JOIN_FULL */
3569 pass_nonnullable_rels = NULL;
3570 pass_forced_null_vars = NIL;
3571 }
3572 reduce_outer_joins_pass2(j->rarg, right_state,
3573 state2, root,
3574 pass_nonnullable_rels,
3575 pass_forced_null_vars);
3576 }
3577 bms_free(local_nonnullable_rels);
3578 }
3579 }
3580 else
3581 elog(ERROR, "unrecognized node type: %d",
3582 (int) nodeTag(jtnode));
3583}
3584
3585/* Helper for reduce_outer_joins_pass2 */
3586static void
3588 int rtindex, Relids relids)
3589{
3591
3592 statep = palloc(sizeof(reduce_outer_joins_partial_state));
3593 statep->full_join_rti = rtindex;
3594 statep->unreduced_side = relids;
3595 state2->partial_reduced = lappend(state2->partial_reduced, statep);
3596}
3597
3598
3599/*
3600 * remove_useless_result_rtes
3601 * Attempt to remove RTE_RESULT RTEs from the join tree.
3602 * Also, elide single-child FromExprs where possible.
3603 *
3604 * We can remove RTE_RESULT entries from the join tree using the knowledge
3605 * that RTE_RESULT returns exactly one row and has no output columns. Hence,
3606 * if one is inner-joined to anything else, we can delete it. Optimizations
3607 * are also possible for some outer-join cases, as detailed below.
3608 *
3609 * This pass also replaces single-child FromExprs with their child node
3610 * where possible. It's appropriate to do that here and not earlier because
3611 * RTE_RESULT removal might reduce a multiple-child FromExpr to have only one
3612 * child. We can remove such a FromExpr if its quals are empty, or if it's
3613 * semantically valid to merge the quals into those of the parent node.
3614 * While removing unnecessary join tree nodes has some micro-efficiency value,
3615 * the real reason to do this is to eliminate cases where the nullable side of
3616 * an outer join node is a FromExpr whose single child is another outer join.
3617 * To correctly determine whether the two outer joins can commute,
3618 * deconstruct_jointree() must treat any quals of such a FromExpr as being
3619 * degenerate quals of the upper outer join. The best way to do that is to
3620 * make them actually *be* quals of the upper join, by dropping the FromExpr
3621 * and hoisting the quals up into the upper join's quals. (Note that there is
3622 * no hazard when the intermediate FromExpr has multiple children, since then
3623 * it represents an inner join that cannot commute with the upper outer join.)
3624 * As long as we have to do that, we might as well elide such FromExprs
3625 * everywhere.
3626 *
3627 * Some of these optimizations depend on recognizing empty (constant-true)
3628 * quals for FromExprs and JoinExprs. That makes it useful to apply this
3629 * optimization pass after expression preprocessing, since that will have
3630 * eliminated constant-true quals, allowing more cases to be recognized as
3631 * optimizable. What's more, the usual reason for an RTE_RESULT to be present
3632 * is that we pulled up a subquery or VALUES clause, thus very possibly
3633 * replacing Vars with constants, making it more likely that a qual can be
3634 * reduced to constant true. Also, because some optimizations depend on
3635 * the outer-join type, it's best to have done reduce_outer_joins() first.
3636 *
3637 * A PlaceHolderVar referencing an RTE_RESULT RTE poses an obstacle to this
3638 * process: we must remove the RTE_RESULT's relid from the PHV's phrels, but
3639 * we must not reduce the phrels set to empty. If that would happen, and
3640 * the RTE_RESULT is an immediate child of an outer join, we have to give up
3641 * and not remove the RTE_RESULT: there is noplace else to evaluate the
3642 * PlaceHolderVar. (That is, in such cases the RTE_RESULT *does* have output
3643 * columns.) But if the RTE_RESULT is an immediate child of an inner join,
3644 * we can usually change the PlaceHolderVar's phrels so as to evaluate it at
3645 * the inner join instead. This is OK because we really only care that PHVs
3646 * are evaluated above or below the correct outer joins. We can't, however,
3647 * postpone the evaluation of a PHV to above where it is used; so there are
3648 * some checks below on whether output PHVs are laterally referenced in the
3649 * other join input rel(s).
3650 *
3651 * We used to try to do this work as part of pull_up_subqueries() where the
3652 * potentially-optimizable cases get introduced; but it's way simpler, and
3653 * more effective, to do it separately.
3654 */
3655void
3657{
3658 Relids dropped_outer_joins = NULL;
3659 ListCell *cell;
3660
3661 /* Top level of jointree must always be a FromExpr */
3662 Assert(IsA(root->parse->jointree, FromExpr));
3663 /* Recurse ... */
3664 root->parse->jointree = (FromExpr *)
3666 (Node *) root->parse->jointree,
3667 NULL,
3668 &dropped_outer_joins);
3669 /* We should still have a FromExpr */
3670 Assert(IsA(root->parse->jointree, FromExpr));
3671
3672 /*
3673 * If we removed any outer-join nodes from the jointree, run around and
3674 * remove references to those joins as nulling rels. (There could be such
3675 * references in PHVs that we pulled up out of the original subquery that
3676 * the RESULT rel replaced. This is kosher on the grounds that we now
3677 * know that such an outer join wouldn't really have nulled anything.) We
3678 * don't do this during the main recursion, for simplicity and because we
3679 * can handle all such joins in a single pass over the parse tree.
3680 */
3681 if (!bms_is_empty(dropped_outer_joins))
3682 {
3683 root->parse = (Query *)
3684 remove_nulling_relids((Node *) root->parse,
3685 dropped_outer_joins,
3686 NULL);
3687 /* There could be references in the append_rel_list, too */
3688 root->append_rel_list = (List *)
3689 remove_nulling_relids((Node *) root->append_rel_list,
3690 dropped_outer_joins,
3691 NULL);
3692 }
3693
3694 /*
3695 * Remove any PlanRowMark referencing an RTE_RESULT RTE. We obviously
3696 * must do that for any RTE_RESULT that we just removed. But one for a
3697 * RTE that we did not remove can be dropped anyway: since the RTE has
3698 * only one possible output row, there is no need for EPQ to mark and
3699 * restore that row.
3700 *
3701 * It's necessary, not optional, to remove the PlanRowMark for a surviving
3702 * RTE_RESULT RTE; otherwise we'll generate a whole-row Var for the
3703 * RTE_RESULT, which the executor has no support for.
3704 */
3705 foreach(cell, root->rowMarks)
3706 {
3707 PlanRowMark *rc = (PlanRowMark *) lfirst(cell);
3708
3709 if (rt_fetch(rc->rti, root->parse->rtable)->rtekind == RTE_RESULT)
3710 root->rowMarks = foreach_delete_current(root->rowMarks, cell);
3711 }
3712}
3713
3714/*
3715 * remove_useless_results_recurse
3716 * Recursive guts of remove_useless_result_rtes.
3717 *
3718 * This recursively processes the jointree and returns a modified jointree.
3719 * In addition, the RT indexes of any removed outer-join nodes are added to
3720 * *dropped_outer_joins.
3721 *
3722 * jtnode is the current jointree node. If it could be valid to merge
3723 * its quals into those of the parent node, parent_quals should point to
3724 * the parent's quals list; otherwise, pass NULL for parent_quals.
3725 * (Note that in some cases, parent_quals points to the quals of a parent
3726 * more than one level up in the tree.)
3727 */
3728static Node *
3730 Node **parent_quals,
3731 Relids *dropped_outer_joins)
3732{
3733 Assert(jtnode != NULL);
3734 if (IsA(jtnode, RangeTblRef))
3735 {
3736 /* Can't immediately do anything with a RangeTblRef */
3737 }
3738 else if (IsA(jtnode, FromExpr))
3739 {
3740 FromExpr *f = (FromExpr *) jtnode;
3741 Relids result_relids = NULL;
3742 ListCell *cell;
3743
3744 /*
3745 * We can drop RTE_RESULT rels from the fromlist so long as at least
3746 * one child remains, since joining to a one-row table changes
3747 * nothing. (But we can't drop a RTE_RESULT that computes PHV(s) that
3748 * are needed by some sibling. The cleanup transformation below would
3749 * reassign the PHVs to be computed at the join, which is too late for
3750 * the sibling's use.) The easiest way to mechanize this rule is to
3751 * modify the list in-place.
3752 */
3753 foreach(cell, f->fromlist)
3754 {
3755 Node *child = (Node *) lfirst(cell);
3756 int varno;
3757
3758 /* Recursively transform child, allowing it to push up quals ... */
3759 child = remove_useless_results_recurse(root, child,
3760 &f->quals,
3761 dropped_outer_joins);
3762 /* ... and stick it back into the tree */
3763 lfirst(cell) = child;
3764
3765 /*
3766 * If it's an RTE_RESULT with at least one sibling, and no sibling
3767 * references dependent PHVs, we can drop it. We don't yet know
3768 * what the inner join's final relid set will be, so postpone
3769 * cleanup of PHVs etc till after this loop.
3770 */
3771 if (list_length(f->fromlist) > 1 &&
3772 (varno = get_result_relid(root, child)) != 0 &&
3774 {
3775 f->fromlist = foreach_delete_current(f->fromlist, cell);
3776 result_relids = bms_add_member(result_relids, varno);
3777 }
3778 }
3779
3780 /*
3781 * Clean up if we dropped any RTE_RESULT RTEs. This is a bit
3782 * inefficient if there's more than one, but it seems better to
3783 * optimize the support code for the single-relid case.
3784 */
3785 if (result_relids)
3786 {
3787 int varno = -1;
3788
3789 while ((varno = bms_next_member(result_relids, varno)) >= 0)
3790 remove_result_refs(root, varno, (Node *) f);
3791 }
3792
3793 /*
3794 * If the FromExpr now has only one child, see if we can elide it.
3795 * This is always valid if there are no quals, except at the top of
3796 * the jointree (since Query.jointree is required to point to a
3797 * FromExpr). Otherwise, we can do it if we can push the quals up to
3798 * the parent node.
3799 *
3800 * Note: while it would not be terribly hard to generalize this
3801 * transformation to merge multi-child FromExprs into their parent
3802 * FromExpr, that risks making the parent join too expensive to plan.
3803 * We leave it to later processing to decide heuristically whether
3804 * that's a good idea. Pulling up a single child is always OK,
3805 * however.
3806 */
3807 if (list_length(f->fromlist) == 1 &&
3808 f != root->parse->jointree &&
3809 (f->quals == NULL || parent_quals != NULL))
3810 {
3811 /*
3812 * Merge any quals up to parent. They should be in implicit-AND
3813 * format by now, so we just need to concatenate lists. Put the
3814 * child quals at the front, on the grounds that they should
3815 * nominally be evaluated earlier.
3816 */
3817 if (f->quals != NULL)
3818 *parent_quals = (Node *)
3820 castNode(List, *parent_quals));
3821 return (Node *) linitial(f->fromlist);
3822 }
3823 }
3824 else if (IsA(jtnode, JoinExpr))
3825 {
3826 JoinExpr *j = (JoinExpr *) jtnode;
3827 int varno;
3828
3829 /*
3830 * First, recurse. We can absorb pushed-up FromExpr quals from either
3831 * child into this node if the jointype is INNER, since then this is
3832 * equivalent to a FromExpr. When the jointype is LEFT, we can absorb
3833 * quals from the RHS child into the current node, as they're
3834 * essentially degenerate quals of the outer join. Moreover, if we've
3835 * been passed down a parent_quals pointer then we can allow quals of
3836 * the LHS child to be absorbed into the parent. (This is important
3837 * to ensure we remove single-child FromExprs immediately below
3838 * commutable left joins.) For other jointypes, we can't move child
3839 * quals up, or at least there's no particular reason to.
3840 */
3841 j->larg = remove_useless_results_recurse(root, j->larg,
3842 (j->jointype == JOIN_INNER) ?
3843 &j->quals :
3844 (j->jointype == JOIN_LEFT) ?
3845 parent_quals : NULL,
3846 dropped_outer_joins);
3847 j->rarg = remove_useless_results_recurse(root, j->rarg,
3848 (j->jointype == JOIN_INNER ||
3849 j->jointype == JOIN_LEFT) ?
3850 &j->quals : NULL,
3851 dropped_outer_joins);
3852
3853 /* Apply join-type-specific optimization rules */
3854 switch (j->jointype)
3855 {
3856 case JOIN_INNER:
3857
3858 /*
3859 * An inner join is equivalent to a FromExpr, so if either
3860 * side was simplified to an RTE_RESULT rel, we can replace
3861 * the join with a FromExpr with just the other side.
3862 * Furthermore, we can elide that FromExpr according to the
3863 * same rules as above.
3864 *
3865 * Just as in the FromExpr case, we can't simplify if the
3866 * other input rel references any PHVs that are marked as to
3867 * be evaluated at the RTE_RESULT rel, because we can't
3868 * postpone their evaluation in that case. But we only have
3869 * to check this in cases where it's syntactically legal for
3870 * the other input to have a LATERAL reference to the
3871 * RTE_RESULT rel. Only RHSes of inner and left joins are
3872 * allowed to have such refs.
3873 */
3874 if ((varno = get_result_relid(root, j->larg)) != 0 &&
3875 !find_dependent_phvs_in_jointree(root, j->rarg, varno))
3876 {
3877 remove_result_refs(root, varno, j->rarg);
3878 if (j->quals != NULL && parent_quals == NULL)
3879 jtnode = (Node *)
3880 makeFromExpr(list_make1(j->rarg), j->quals);
3881 else
3882 {
3883 /* Merge any quals up to parent */
3884 if (j->quals != NULL)
3885 *parent_quals = (Node *)
3886 list_concat(castNode(List, j->quals),
3887 castNode(List, *parent_quals));
3888 jtnode = j->rarg;
3889 }
3890 }
3891 else if ((varno = get_result_relid(root, j->rarg)) != 0)
3892 {
3893 remove_result_refs(root, varno, j->larg);
3894 if (j->quals != NULL && parent_quals == NULL)
3895 jtnode = (Node *)
3896 makeFromExpr(list_make1(j->larg), j->quals);
3897 else
3898 {
3899 /* Merge any quals up to parent */
3900 if (j->quals != NULL)
3901 *parent_quals = (Node *)
3902 list_concat(castNode(List, j->quals),
3903 castNode(List, *parent_quals));
3904 jtnode = j->larg;
3905 }
3906 }
3907 break;
3908 case JOIN_LEFT:
3909
3910 /*
3911 * We can simplify this case if the RHS is an RTE_RESULT, with
3912 * two different possibilities:
3913 *
3914 * If the qual is empty (JOIN ON TRUE), then the join can be
3915 * strength-reduced to a plain inner join, since each LHS row
3916 * necessarily has exactly one join partner. So we can always
3917 * discard the RHS, much as in the JOIN_INNER case above.
3918 * (Again, the LHS could not contain a lateral reference to
3919 * the RHS.)
3920 *
3921 * Otherwise, it's still true that each LHS row should be
3922 * returned exactly once, and since the RHS returns no columns
3923 * (unless there are PHVs that have to be evaluated there), we
3924 * don't much care if it's null-extended or not. So in this
3925 * case also, we can just ignore the qual and discard the left
3926 * join.
3927 */
3928 if ((varno = get_result_relid(root, j->rarg)) != 0 &&
3929 (j->quals == NULL ||
3930 !find_dependent_phvs(root, varno)))
3931 {
3932 remove_result_refs(root, varno, j->larg);
3933 *dropped_outer_joins = bms_add_member(*dropped_outer_joins,
3934 j->rtindex);
3935 jtnode = j->larg;
3936 }
3937 break;
3938 case JOIN_SEMI:
3939
3940 /*
3941 * We may simplify this case if the RHS is an RTE_RESULT; the
3942 * join qual becomes effectively just a filter qual for the
3943 * LHS, since we should either return the LHS row or not. The
3944 * filter clause must go into a new FromExpr if we can't push
3945 * it up to the parent.
3946 *
3947 * There is a fine point about PHVs that are supposed to be
3948 * evaluated at the RHS. Such PHVs could only appear in the
3949 * semijoin's qual, since the rest of the query cannot
3950 * reference any outputs of the semijoin's RHS. Therefore,
3951 * they can't actually go to null before being examined, and
3952 * it'd be OK to just remove the PHV wrapping. We don't have
3953 * infrastructure for that, but remove_result_refs() will
3954 * relabel them as to be evaluated at the LHS, which is fine.
3955 *
3956 * Also, we don't need to worry about removing traces of the
3957 * join's rtindex, since it hasn't got one.
3958 */
3959 if ((varno = get_result_relid(root, j->rarg)) != 0)
3960 {
3961 Assert(j->rtindex == 0);
3962 remove_result_refs(root, varno, j->larg);
3963 if (j->quals != NULL && parent_quals == NULL)
3964 jtnode = (Node *)
3965 makeFromExpr(list_make1(j->larg), j->quals);
3966 else
3967 {
3968 /* Merge any quals up to parent */
3969 if (j->quals != NULL)
3970 *parent_quals = (Node *)
3971 list_concat(castNode(List, j->quals),
3972 castNode(List, *parent_quals));
3973 jtnode = j->larg;
3974 }
3975 }
3976 break;
3977 case JOIN_FULL:
3978 case JOIN_ANTI:
3979 /* We have no special smarts for these cases */
3980 break;
3981 default:
3982 /* Note: JOIN_RIGHT should be gone at this point */
3983 elog(ERROR, "unrecognized join type: %d",
3984 (int) j->jointype);
3985 break;
3986 }
3987 }
3988 else
3989 elog(ERROR, "unrecognized node type: %d",
3990 (int) nodeTag(jtnode));
3991 return jtnode;
3992}
3993
3994/*
3995 * get_result_relid
3996 * If jtnode is a RangeTblRef for an RTE_RESULT RTE, return its relid;
3997 * otherwise return 0.
3998 */
3999static int
4001{
4002 int varno;
4003
4004 if (!IsA(jtnode, RangeTblRef))
4005 return 0;
4006 varno = ((RangeTblRef *) jtnode)->rtindex;
4007 if (rt_fetch(varno, root->parse->rtable)->rtekind != RTE_RESULT)
4008 return 0;
4009 return varno;
4010}
4011
4012/*
4013 * remove_result_refs
4014 * Helper routine for dropping an unneeded RTE_RESULT RTE.
4015 *
4016 * This doesn't physically remove the RTE from the jointree, because that's
4017 * more easily handled in remove_useless_results_recurse. What it does do
4018 * is the necessary cleanup in the rest of the tree: we must adjust any PHVs
4019 * that may reference the RTE. Be sure to call this at a point where the
4020 * jointree is valid (no disconnected nodes).
4021 *
4022 * Note that we don't need to process the append_rel_list, since RTEs
4023 * referenced directly in the jointree won't be appendrel members.
4024 *
4025 * varno is the RTE_RESULT's relid.
4026 * newjtloc is the jointree location at which any PHVs referencing the
4027 * RTE_RESULT should be evaluated instead.
4028 */
4029static void
4031{
4032 /* Fix up PlaceHolderVars as needed */
4033 /* If there are no PHVs anywhere, we can skip this bit */
4034 if (root->glob->lastPHId != 0)
4035 {
4036 Relids subrelids;
4037
4038 subrelids = get_relids_in_jointree(newjtloc, true, false);
4039 Assert(!bms_is_empty(subrelids));
4040 substitute_phv_relids((Node *) root->parse, varno, subrelids);
4041 fix_append_rel_relids(root, varno, subrelids);
4042 }
4043
4044 /*
4045 * We also need to remove any PlanRowMark referencing the RTE, but we
4046 * postpone that work until we return to remove_useless_result_rtes.
4047 */
4048}
4049
4050
4051/*
4052 * find_dependent_phvs - are there any PlaceHolderVars whose relids are
4053 * exactly the given varno?
4054 *
4055 * find_dependent_phvs should be used when we want to see if there are
4056 * any such PHVs anywhere in the Query. Another use-case is to see if
4057 * a subtree of the join tree contains such PHVs; but for that, we have
4058 * to look not only at the join tree nodes themselves but at the
4059 * referenced RTEs. For that, use find_dependent_phvs_in_jointree.
4060 */
4061
4062typedef struct
4063{
4067
4068static bool
4071{
4072 if (node == NULL)
4073 return false;
4074 if (IsA(node, PlaceHolderVar))
4075 {
4076 PlaceHolderVar *phv = (PlaceHolderVar *) node;
4077
4078 if (phv->phlevelsup == context->sublevels_up &&
4079 bms_equal(context->relids, phv->phrels))
4080 return true;
4081 /* fall through to examine children */
4082 }
4083 if (IsA(node, Query))
4084 {
4085 /* Recurse into subselects */
4086 bool result;
4087
4088 context->sublevels_up++;
4089 result = query_tree_walker((Query *) node,
4091 context, 0);
4092 context->sublevels_up--;
4093 return result;
4094 }
4095 /* Shouldn't need to handle most planner auxiliary nodes here */
4096 Assert(!IsA(node, SpecialJoinInfo));
4097 Assert(!IsA(node, PlaceHolderInfo));
4098 Assert(!IsA(node, MinMaxAggInfo));
4099
4101}
4102
4103static bool
4105{
4107
4108 /* If there are no PHVs anywhere, we needn't work hard */
4109 if (root->glob->lastPHId == 0)
4110 return false;
4111
4112 context.relids = bms_make_singleton(varno);
4113 context.sublevels_up = 0;
4114
4115 if (query_tree_walker(root->parse, find_dependent_phvs_walker, &context, 0))
4116 return true;
4117 /* The append_rel_list could be populated already, so check it too */
4118 if (expression_tree_walker((Node *) root->append_rel_list,
4120 &context))
4121 return true;
4122 return false;
4123}
4124
4125static bool
4127{
4129 Relids subrelids;
4130 int relid;
4131
4132 /* If there are no PHVs anywhere, we needn't work hard */
4133 if (root->glob->lastPHId == 0)
4134 return false;
4135
4136 context.relids = bms_make_singleton(varno);
4137 context.sublevels_up = 0;
4138
4139 /*
4140 * See if the jointree fragment itself contains references (in join quals)
4141 */
4142 if (find_dependent_phvs_walker(node, &context))
4143 return true;
4144
4145 /*
4146 * Otherwise, identify the set of referenced RTEs (we can ignore joins,
4147 * since they should be flattened already, so their join alias lists no
4148 * longer matter), and tediously check each RTE. We can ignore RTEs that
4149 * are not marked LATERAL, though, since they couldn't possibly contain
4150 * any cross-references to other RTEs.
4151 */
4152 subrelids = get_relids_in_jointree(node, false, false);
4153 relid = -1;
4154 while ((relid = bms_next_member(subrelids, relid)) >= 0)
4155 {
4156 RangeTblEntry *rte = rt_fetch(relid, root->parse->rtable);
4157
4158 if (rte->lateral &&
4160 return true;
4161 }
4162
4163 return false;
4164}
4165
4166/*
4167 * substitute_phv_relids - adjust PlaceHolderVar relid sets after pulling up
4168 * a subquery or removing an RTE_RESULT jointree item
4169 *
4170 * Find any PlaceHolderVar nodes in the given tree that reference the
4171 * pulled-up relid, and change them to reference the replacement relid(s).
4172 *
4173 * NOTE: although this has the form of a walker, we cheat and modify the
4174 * nodes in-place. This should be OK since the tree was copied by
4175 * pullup_replace_vars earlier. Avoid scribbling on the original values of
4176 * the bitmapsets, though, because expression_tree_mutator doesn't copy those.
4177 */
4178
4179typedef struct
4180{
4185
4186static bool
4189{
4190 if (node == NULL)
4191 return false;
4192 if (IsA(node, PlaceHolderVar))
4193 {
4194 PlaceHolderVar *phv = (PlaceHolderVar *) node;
4195
4196 if (phv->phlevelsup == context->sublevels_up &&
4197 bms_is_member(context->varno, phv->phrels))
4198 {
4199 phv->phrels = bms_union(phv->phrels,
4200 context->subrelids);
4201 phv->phrels = bms_del_member(phv->phrels,
4202 context->varno);
4203 /* Assert we haven't broken the PHV */
4204 Assert(!bms_is_empty(phv->phrels));
4205 }
4206 /* fall through to examine children */
4207 }
4208 if (IsA(node, Query))
4209 {
4210 /* Recurse into subselects */
4211 bool result;
4212
4213 context->sublevels_up++;
4214 result = query_tree_walker((Query *) node,
4216 context, 0);
4217 context->sublevels_up--;
4218 return result;
4219 }
4220 /* Shouldn't need to handle planner auxiliary nodes here */
4221 Assert(!IsA(node, SpecialJoinInfo));
4222 Assert(!IsA(node, AppendRelInfo));
4223 Assert(!IsA(node, PlaceHolderInfo));
4224 Assert(!IsA(node, MinMaxAggInfo));
4225
4227}
4228
4229static void
4230substitute_phv_relids(Node *node, int varno, Relids subrelids)
4231{
4233
4234 context.varno = varno;
4235 context.sublevels_up = 0;
4236 context.subrelids = subrelids;
4237
4238 /*
4239 * Must be prepared to start with a Query or a bare expression tree.
4240 */
4243 &context,
4244 0);
4245}
4246
4247/*
4248 * fix_append_rel_relids: update RT-index fields of AppendRelInfo nodes
4249 *
4250 * When we pull up a subquery, any AppendRelInfo references to the subquery's
4251 * RT index have to be replaced by the substituted relid (and there had better
4252 * be only one). We also need to apply substitute_phv_relids to their
4253 * translated_vars lists, since those might contain PlaceHolderVars.
4254 *
4255 * We assume we may modify the AppendRelInfo nodes in-place.
4256 */
4257static void
4259{
4260 ListCell *l;
4261 int subvarno = -1;
4262
4263 /*
4264 * We only want to extract the member relid once, but we mustn't fail
4265 * immediately if there are multiple members; it could be that none of the
4266 * AppendRelInfo nodes refer to it. So compute it on first use. Note that
4267 * bms_singleton_member will complain if set is not singleton.
4268 */
4269 foreach(l, root->append_rel_list)
4270 {
4271 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
4272
4273 /* The parent_relid shouldn't ever be a pullup target */
4274 Assert(appinfo->parent_relid != varno);
4275
4276 if (appinfo->child_relid == varno)
4277 {
4278 if (subvarno < 0)
4279 subvarno = bms_singleton_member(subrelids);
4280 appinfo->child_relid = subvarno;
4281 }
4282
4283 /* Also fix up any PHVs in its translated vars */
4284 if (root->glob->lastPHId != 0)
4286 varno, subrelids);
4287 }
4288}
4289
4290/*
4291 * get_relids_in_jointree: get set of RT indexes present in a jointree
4292 *
4293 * Base-relation relids are always included in the result.
4294 * If include_outer_joins is true, outer-join RT indexes are included.
4295 * If include_inner_joins is true, inner-join RT indexes are included.
4296 *
4297 * Note that for most purposes in the planner, outer joins are included
4298 * in standard relid sets. Setting include_inner_joins true is only
4299 * appropriate for special purposes during subquery flattening.
4300 */
4301Relids
4302get_relids_in_jointree(Node *jtnode, bool include_outer_joins,
4303 bool include_inner_joins)
4304{
4305 Relids result = NULL;
4306
4307 if (jtnode == NULL)
4308 return result;
4309 if (IsA(jtnode, RangeTblRef))
4310 {
4311 int varno = ((RangeTblRef *) jtnode)->rtindex;
4312
4313 result = bms_make_singleton(varno);
4314 }
4315 else if (IsA(jtnode, FromExpr))
4316 {
4317 FromExpr *f = (FromExpr *) jtnode;
4318 ListCell *l;
4319
4320 foreach(l, f->fromlist)
4321 {
4322 result = bms_join(result,
4324 include_outer_joins,
4325 include_inner_joins));
4326 }
4327 }
4328 else if (IsA(jtnode, JoinExpr))
4329 {
4330 JoinExpr *j = (JoinExpr *) jtnode;
4331
4332 result = get_relids_in_jointree(j->larg,
4333 include_outer_joins,
4334 include_inner_joins);
4335 result = bms_join(result,
4337 include_outer_joins,
4338 include_inner_joins));
4339 if (j->rtindex)
4340 {
4341 if (j->jointype == JOIN_INNER)
4342 {
4343 if (include_inner_joins)
4344 result = bms_add_member(result, j->rtindex);
4345 }
4346 else
4347 {
4348 if (include_outer_joins)
4349 result = bms_add_member(result, j->rtindex);
4350 }
4351 }
4352 }
4353 else
4354 elog(ERROR, "unrecognized node type: %d",
4355 (int) nodeTag(jtnode));
4356 return result;
4357}
4358
4359/*
4360 * get_relids_for_join: get set of base+OJ RT indexes making up a join
4361 */
4362Relids
4363get_relids_for_join(Query *query, int joinrelid)
4364{
4365 Node *jtnode;
4366
4367 jtnode = find_jointree_node_for_rel((Node *) query->jointree,
4368 joinrelid);
4369 if (!jtnode)
4370 elog(ERROR, "could not find join node %d", joinrelid);
4371 return get_relids_in_jointree(jtnode, true, false);
4372}
4373
4374/*
4375 * find_jointree_node_for_rel: locate jointree node for a base or join RT index
4376 *
4377 * Returns NULL if not found
4378 */
4379static Node *
4381{
4382 if (jtnode == NULL)
4383 return NULL;
4384 if (IsA(jtnode, RangeTblRef))
4385 {
4386 int varno = ((RangeTblRef *) jtnode)->rtindex;
4387
4388 if (relid == varno)
4389 return jtnode;
4390 }
4391 else if (IsA(jtnode, FromExpr))
4392 {
4393 FromExpr *f = (FromExpr *) jtnode;
4394 ListCell *l;
4395
4396 foreach(l, f->fromlist)
4397 {
4398 jtnode = find_jointree_node_for_rel(lfirst(l), relid);
4399 if (jtnode)
4400 return jtnode;
4401 }
4402 }
4403 else if (IsA(jtnode, JoinExpr))
4404 {
4405 JoinExpr *j = (JoinExpr *) jtnode;
4406
4407 if (relid == j->rtindex)
4408 return jtnode;
4409 jtnode = find_jointree_node_for_rel(j->larg, relid);
4410 if (jtnode)
4411 return jtnode;
4412 jtnode = find_jointree_node_for_rel(j->rarg, relid);
4413 if (jtnode)
4414 return jtnode;
4415 }
4416 else
4417 elog(ERROR, "unrecognized node type: %d",
4418 (int) nodeTag(jtnode));
4419 return NULL;
4420}
4421
4422/*
4423 * get_nullingrels: collect info about which outer joins null which relations
4424 *
4425 * The result struct contains, for each leaf relation used in the query,
4426 * the set of relids of outer joins that potentially null that rel.
4427 */
4428static nullingrel_info *
4430{
4432
4433 result->rtlength = list_length(parse->rtable);
4434 result->nullingrels = palloc0_array(Relids, result->rtlength + 1);
4435 get_nullingrels_recurse((Node *) parse->jointree, NULL, result);
4436 return result;
4437}
4438
4439/*
4440 * Recursive guts of get_nullingrels().
4441 *
4442 * Note: at any recursion level, the passed-down upper_nullingrels must be
4443 * treated as a constant, but it can be stored directly into *info
4444 * if we're at leaf level. Upper recursion levels do not free their mutated
4445 * copies of the nullingrels, because those are probably referenced by
4446 * at least one leaf rel.
4447 */
4448static void
4449get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels,
4450 nullingrel_info *info)
4451{
4452 if (jtnode == NULL)
4453 return;
4454 if (IsA(jtnode, RangeTblRef))
4455 {
4456 int varno = ((RangeTblRef *) jtnode)->rtindex;
4457
4458 Assert(varno > 0 && varno <= info->rtlength);
4459 info->nullingrels[varno] = upper_nullingrels;
4460 }
4461 else if (IsA(jtnode, FromExpr))
4462 {
4463 FromExpr *f = (FromExpr *) jtnode;
4464 ListCell *l;
4465
4466 foreach(l, f->fromlist)
4467 {
4468 get_nullingrels_recurse(lfirst(l), upper_nullingrels, info);
4469 }
4470 }
4471 else if (IsA(jtnode, JoinExpr))
4472 {
4473 JoinExpr *j = (JoinExpr *) jtnode;
4474 Relids local_nullingrels;
4475
4476 switch (j->jointype)
4477 {
4478 case JOIN_INNER:
4479 get_nullingrels_recurse(j->larg, upper_nullingrels, info);
4480 get_nullingrels_recurse(j->rarg, upper_nullingrels, info);
4481 break;
4482 case JOIN_LEFT:
4483 case JOIN_SEMI:
4484 case JOIN_ANTI:
4485 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4486 j->rtindex);
4487 get_nullingrels_recurse(j->larg, upper_nullingrels, info);
4488 get_nullingrels_recurse(j->rarg, local_nullingrels, info);
4489 break;
4490 case JOIN_FULL:
4491 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4492 j->rtindex);
4493 get_nullingrels_recurse(j->larg, local_nullingrels, info);
4494 get_nullingrels_recurse(j->rarg, local_nullingrels, info);
4495 break;
4496 case JOIN_RIGHT:
4497 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4498 j->rtindex);
4499 get_nullingrels_recurse(j->larg, local_nullingrels, info);
4500 get_nullingrels_recurse(j->rarg, upper_nullingrels, info);
4501 break;
4502 default:
4503 elog(ERROR, "unrecognized join type: %d",
4504 (int) j->jointype);
4505 break;
4506 }
4507 }
4508 else
4509 elog(ERROR, "unrecognized node type: %d",
4510 (int) nodeTag(jtnode));
4511}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:868
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1230
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
unsigned int Index
Definition: c.h:620
List * find_forced_null_vars(Node *node)
Definition: clauses.c:1923
Query * inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
Definition: clauses.c:5167
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2262
List * find_nonnullable_vars(Node *clause)
Definition: clauses.c:1714
Relids find_nonnullable_rels(Node *clause)
Definition: clauses.c:1463
bool contain_nonstrict_functions(Node *clause)
Definition: clauses.c:997
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:542
static bool restricted
Definition: command.c:199
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc0_array(type, count)
Definition: fe_memutils.h:77
TypeFuncClass get_expr_result_type(Node *expr, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:299
TypeFuncClass
Definition: funcapi.h:147
@ TYPEFUNC_SCALAR
Definition: funcapi.h:148
Assert(PointerIsAligned(start, uint64))
int j
Definition: isn.c:78
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
#define NoLock
Definition: lockdefs.h:34
Alias * makeAlias(const char *aliasname, List *colnames)
Definition: makefuncs.c:438
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
FromExpr * makeFromExpr(List *fromlist, Node *quals)
Definition: makefuncs.c:336
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
Var * makeWholeRowVar(RangeTblEntry *rte, int varno, Index varlevelsup, bool allowScalar)
Definition: makefuncs.c:137
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:727
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
Node * make_and_qual(Node *qual1, Node *qual2)
Definition: makefuncs.c:780
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
List * mbms_add_members(List *a, const List *b)
Bitmapset * mbms_overlap_sets(const List *a, const List *b)
bool expression_returns_set(Node *clause)
Definition: nodeFuncs.c:763
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:107
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define query_or_expression_tree_walker(n, w, c, f)
Definition: nodeFuncs.h:171
#define range_table_entry_walker(r, w, c, f)
Definition: nodeFuncs.h:168
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
static bool is_notclause(const void *clause)
Definition: nodeFuncs.h:125
static Expr * get_notclausearg(const void *notclause)
Definition: nodeFuncs.h:134
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
#define nodeTag(nodeptr)
Definition: nodes.h:139
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:348
@ CMD_MERGE
Definition: nodes.h:279
@ CMD_SELECT
Definition: nodes.h:275
@ CMD_NOTHING
Definition: nodes.h:282
#define makeNode(_type_)
Definition: nodes.h:161
#define castNode(_type_, nodeptr)
Definition: nodes.h:182
JoinType
Definition: nodes.h:298
@ JOIN_SEMI
Definition: nodes.h:317
@ JOIN_FULL
Definition: nodes.h:305
@ JOIN_INNER
Definition: nodes.h:303
@ JOIN_RIGHT
Definition: nodes.h:306
@ JOIN_LEFT
Definition: nodes.h:304
@ JOIN_ANTI
Definition: nodes.h:318
@ SETOP_UNION
Definition: parsenodes.h:2175
@ RTE_JOIN
Definition: parsenodes.h:1043
@ RTE_CTE
Definition: parsenodes.h:1047
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1048
@ RTE_VALUES
Definition: parsenodes.h:1046
@ RTE_SUBQUERY
Definition: parsenodes.h:1042
@ RTE_RESULT
Definition: parsenodes.h:1049
@ RTE_FUNCTION
Definition: parsenodes.h:1044
@ RTE_TABLEFUNC
Definition: parsenodes.h:1045
@ RTE_GROUP
Definition: parsenodes.h:1052
@ RTE_RELATION
Definition: parsenodes.h:1041
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial_node(type, l)
Definition: pg_list.h:181
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
#define foreach_node(type, var, lst)
Definition: pg_list.h:496
static rewind_source * source
Definition: pg_rewind.c:89
PlaceHolderVar * make_placeholder_expr(PlannerInfo *root, Expr *expr, Relids phrels)
Definition: placeholder.c:54
void get_relation_notnullatts(PlannerInfo *root, Relation relation)
Definition: plancat.c:682
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
static Node * pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, JoinExpr *lowest_outer_join, AppendRelInfo *containing_appendrel)
static nullingrel_info * get_nullingrels(Query *parse)
static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc)
static Node * pull_up_constant_function(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, AppendRelInfo *containing_appendrel)
void preprocess_function_rtes(PlannerInfo *root)
static bool find_dependent_phvs_walker(Node *node, find_dependent_phvs_context *context)
static Node * find_jointree_node_for_rel(Node *jtnode, int relid)
static Node * pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
static void reduce_outer_joins_pass2(Node *jtnode, reduce_outer_joins_pass1_state *state1, reduce_outer_joins_pass2_state *state2, PlannerInfo *root, Relids nonnullable_rels, List *forced_null_vars)
static void pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, int parentRTindex, Query *setOpQuery, int childRToffset)
static bool is_simple_values(PlannerInfo *root, RangeTblEntry *rte)
static void make_setop_translation_list(Query *query, int newvarno, AppendRelInfo *appinfo)
void flatten_simple_union_all(PlannerInfo *root)
void transform_MERGE_to_join(Query *parse)
Definition: prepjointree.c:187
static void report_reduced_full_join(reduce_outer_joins_pass2_state *state2, int rtindex, Relids relids)
static void perform_pullup_replace_vars(PlannerInfo *root, pullup_replace_vars_context *rvcontext, AppendRelInfo *containing_appendrel)
struct nullingrel_info nullingrel_info
void remove_useless_result_rtes(PlannerInfo *root)
static Node * pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, Relids *relids)
Definition: prepjointree.c:674
static void get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels, nullingrel_info *info)
ReplaceWrapOption
Definition: prepjointree.c:63
@ REPLACE_WRAP_VARFREE
Definition: prepjointree.c:66
@ REPLACE_WRAP_ALL
Definition: prepjointree.c:65
@ REPLACE_WRAP_NONE
Definition: prepjointree.c:64
static reduce_outer_joins_pass1_state * reduce_outer_joins_pass1(Node *jtnode)
static void replace_vars_in_jointree(Node *jtnode, pullup_replace_vars_context *context)
static bool is_simple_subquery(PlannerInfo *root, Query *subquery, RangeTblEntry *rte, JoinExpr *lowest_outer_join)
static void substitute_phv_relids(Node *node, int varno, Relids subrelids)
void pull_up_sublinks(PlannerInfo *root)
Definition: prepjointree.c:647
static Node * pullup_replace_vars_callback(Var *var, replace_rte_variables_context *context)
static Node * pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, JoinExpr *lowest_outer_join, AppendRelInfo *containing_appendrel)
void replace_empty_jointree(Query *parse)
Definition: prepjointree.c:589
static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes)
static bool substitute_phv_relids_walker(Node *node, substitute_phv_relids_context *context)
static void fix_append_rel_relids(PlannerInfo *root, int varno, Relids subrelids)
static Node * remove_useless_results_recurse(PlannerInfo *root, Node *jtnode, Node **parent_quals, Relids *dropped_outer_joins)
static Query * pullup_replace_vars_subquery(Query *query, pullup_replace_vars_context *context)
Relids get_relids_for_join(Query *query, int joinrelid)
void pull_up_subqueries(PlannerInfo *root)
Relids get_relids_in_jointree(Node *jtnode, bool include_outer_joins, bool include_inner_joins)
static int get_result_relid(PlannerInfo *root, Node *jtnode)
Query * preprocess_relation_rtes(PlannerInfo *root)
Definition: prepjointree.c:417
static Node * pull_up_simple_values(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
struct reduce_outer_joins_pass1_state reduce_outer_joins_pass1_state
struct reduce_outer_joins_partial_state reduce_outer_joins_partial_state
static bool is_safe_append_member(Query *subquery)
struct pullup_replace_vars_context pullup_replace_vars_context
static Node * pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node, Node **jtlink1, Relids available_rels1, Node **jtlink2, Relids available_rels2)
Definition: prepjointree.c:831
void reduce_outer_joins(PlannerInfo *root)
static Query * expand_virtual_generated_columns(PlannerInfo *root, Query *parse, RangeTblEntry *rte, int rt_index, Relation relation)
Definition: prepjointree.c:486
static bool find_dependent_phvs(PlannerInfo *root, int varno)
static bool jointree_contains_lateral_outer_refs(PlannerInfo *root, Node *jtnode, bool restricted, Relids safe_upper_varnos)
struct reduce_outer_joins_pass2_state reduce_outer_joins_pass2_state
static Node * pullup_replace_vars(Node *expr, pullup_replace_vars_context *context)
static bool is_simple_union_all(Query *subquery)
static bool find_dependent_phvs_in_jointree(PlannerInfo *root, Node *node, int varno)
@ ANY_SUBLINK
Definition: primnodes.h:1018
@ EXISTS_SUBLINK
Definition: primnodes.h:1016
#define NUM_MERGE_MATCH_KINDS
Definition: primnodes.h:2012
@ IS_NOT_NULL
Definition: primnodes.h:1963
@ MERGE_WHEN_NOT_MATCHED_BY_TARGET
Definition: primnodes.h:2009
@ MERGE_WHEN_NOT_MATCHED_BY_SOURCE
Definition: primnodes.h:2008
@ MERGE_WHEN_MATCHED
Definition: primnodes.h:2007
tree ctl root
Definition: radixtree.h:1857
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:717
#define RelationGetDescr(relation)
Definition: rel.h:540
Node * build_generation_expression(Relation rel, int attrno)
void IncrementVarSublevelsUp_rtable(List *rtable, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:907
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:736
void OffsetVarNodes(Node *node, int offset, int sublevels_up)
Definition: rewriteManip.c:476
void CombineRangeTables(List **dst_rtable, List **dst_perminfos, List *src_rtable, List *src_perminfos)
Definition: rewriteManip.c:347
Node * add_nulling_relids(Node *node, const Bitmapset *target_relids, const Bitmapset *added_relids)
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
Node * replace_rte_variables(Node *node, int target_varno, int sublevels_up, replace_rte_variables_callback callback, void *callback_arg, bool *outer_hasSubLinks)
Node * ReplaceVarFromTargetList(Var *var, RangeTblEntry *target_rte, List *targetlist, int result_relation, ReplaceVarsNoMatchOption nomatch_option, int nomatch_varno)
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:884
@ REPLACEVARS_REPORT_ERROR
Definition: rewriteManip.h:39
void check_stack_depth(void)
Definition: stack_depth.c:95
Index child_relid
Definition: pathnodes.h:3105
List * translated_vars
Definition: pathnodes.h:3132
Index parent_relid
Definition: pathnodes.h:3104
int num_child_cols
Definition: pathnodes.h:3140
Oid parent_reltype
Definition: pathnodes.h:3113
Node * quals
Definition: primnodes.h:2344
List * fromlist
Definition: primnodes.h:2343
Node * quals
Definition: primnodes.h:2324
JoinType jointype
Definition: primnodes.h:2315
int rtindex
Definition: primnodes.h:2328
Node * larg
Definition: primnodes.h:2317
bool isNatural
Definition: primnodes.h:2316
Node * rarg
Definition: primnodes.h:2318
Definition: pg_list.h:54
Definition: nodes.h:135
NullTestType nulltesttype
Definition: primnodes.h:1970
ParseLoc location
Definition: primnodes.h:1973
Expr * arg
Definition: primnodes.h:1969
Relids phnullingrels
Definition: pathnodes.h:2931
Index phlevelsup
Definition: pathnodes.h:2937
List * minmax_aggs
Definition: pathnodes.h:496
List * processed_tlist
Definition: pathnodes.h:480
bool hasRecursion
Definition: pathnodes.h:528
List * cte_plan_ids
Definition: pathnodes.h:323
int last_rinfo_serial
Definition: pathnodes.h:361
Index qual_security_level
Definition: pathnodes.h:513
List * init_plans
Definition: pathnodes.h:317
List * multiexpr_params
Definition: pathnodes.h:326
List * row_identity_vars
Definition: pathnodes.h:386
bool ec_merging_done
Definition: pathnodes.h:335
Bitmapset * outer_params
Definition: pathnodes.h:239
Index query_level
Definition: pathnodes.h:226
List * append_rel_list
Definition: pathnodes.h:383
struct Path * non_recursive_path
Definition: pathnodes.h:556
List * placeholder_list
Definition: pathnodes.h:392
PlannerGlobal * glob
Definition: pathnodes.h:223
List * join_domains
Definition: pathnodes.h:329
List * eq_classes
Definition: pathnodes.h:332
int wt_param_id
Definition: pathnodes.h:554
List * plan_params
Definition: pathnodes.h:238
List * processed_groupClause
Definition: pathnodes.h:457
List * processed_distinctClause
Definition: pathnodes.h:469
Query * parse
Definition: pathnodes.h:220
List * rowMarks
Definition: pathnodes.h:389
List * update_colnos
Definition: pathnodes.h:488
bool placeholdersFrozen
Definition: pathnodes.h:526
List * join_info_list
Definition: pathnodes.h:358
Relids all_result_relids
Definition: pathnodes.h:372
Relids leaf_result_relids
Definition: pathnodes.h:374
List * rowMarks
Definition: parsenodes.h:233
Node * limitCount
Definition: parsenodes.h:230
FromExpr * jointree
Definition: parsenodes.h:182
Node * setOperations
Definition: parsenodes.h:235
List * cteList
Definition: parsenodes.h:173
List * groupClause
Definition: parsenodes.h:216
Node * havingQual
Definition: parsenodes.h:221
List * rtable
Definition: parsenodes.h:175
Node * limitOffset
Definition: parsenodes.h:229
CmdType commandType
Definition: parsenodes.h:121
List * targetList
Definition: parsenodes.h:198
List * groupingSets
Definition: parsenodes.h:219
List * distinctClause
Definition: parsenodes.h:225
List * sortClause
Definition: parsenodes.h:227
TableFunc * tablefunc
Definition: parsenodes.h:1213
bool funcordinality
Definition: parsenodes.h:1208
struct TableSampleClause * tablesample
Definition: parsenodes.h:1127
Query * subquery
Definition: parsenodes.h:1133
List * values_lists
Definition: parsenodes.h:1219
JoinType jointype
Definition: parsenodes.h:1180
List * functions
Definition: parsenodes.h:1206
RTEKind rtekind
Definition: parsenodes.h:1076
Form_pg_class rd_rel
Definition: rel.h:111
SetOperation op
Definition: parsenodes.h:2252
AttrNumber resno
Definition: primnodes.h:2227
bool has_generated_virtual
Definition: tupdesc.h:47
TupleConstr * constr
Definition: tupdesc.h:141
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
Index varlevelsup
Definition: primnodes.h:294
Relids * nullingrels
Definition: prepjointree.c:56
nullingrel_info * nullinfo
Definition: prepjointree.c:79
ReplaceWrapOption wrap_option
Definition: prepjointree.c:83
RangeTblEntry * target_rte
Definition: prepjointree.c:74
Definition: regcomp.c:282
JoinExpr * convert_ANY_sublink_to_join(PlannerInfo *root, SubLink *sublink, Relids available_rels)
Definition: subselect.c:1333
ScalarArrayOpExpr * convert_VALUES_to_ANY(PlannerInfo *root, Node *testexpr, Query *values)
Definition: subselect.c:1227
JoinExpr * convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, bool under_not, Relids available_rels)
Definition: subselect.c:1450
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
bool tlist_same_datatypes(List *tlist, List *colTypes, bool junkOK)
Definition: tlist.c:248
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:444
Relids pull_varnos_of_level(PlannerInfo *root, Node *node, int levelsup)
Definition: var.c:140
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114
Node * flatten_join_alias_vars(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:789