NumPy & Scientific Computing
Fory natively supports numpy arrays with optimized serialization.
NumPy Array Serialization
Large arrays use zero-copy when possible:
import pyfory
import numpy as np
f = pyfory.Fory()
# Numpy arrays are supported natively
arrays = {
'matrix': np.random.rand(1000, 1000),
'vector': np.arange(10000),
'bool_mask': np.random.choice([True, False], size=5000)
}
data = f.serialize(arrays)
result = f.deserialize(data)
# Zero-copy for compatible array types
assert np.array_equal(arrays['matrix'], result['matrix'])
Pandas DataFrames
Fory can serialize Pandas DataFrames efficiently:
import pyfory
import pandas as pd
import numpy as np
f = pyfory.Fory(xlang=False, ref=False, strict=False)
df = pd.DataFrame({
'a': np.arange(1000, dtype=np.float64),
'b': np.arange(1000, dtype=np.int64),
'c': ['text'] * 1000
})
data = f.serialize(df)
result = f.deserialize(data)
assert df.equals(result)
Zero-Copy with Out-of-Band Buffers
For maximum performance with large arrays, use out-of-band serialization:
import pyfory
import numpy as np
f = pyfory.Fory(xlang=False, ref=False, strict=False)
# Large array
array = np.random.rand(10000, 1000)
# Out-of-band for zero-copy
buffer_objects = []
data = f.serialize(array, buffer_callback=buffer_objects.append)
buffers = [obj.getbuffer() for obj in buffer_objects]
result = f.deserialize(data, buffers=buffers)
assert np.array_equal(array, result)
Supported Array Types
np.ndarray(all dtypes)np.matrix- Structured arrays
- Record arrays
Related Topics
- Out-of-Band Serialization - Zero-copy buffers
- Basic Serialization - Standard usage