#Overview
Core engine component which does the following
-
Analysis the user input
-
Run through the ML algorithm
-
Return the response
-
Basic trainer model
-
Training data set
-
Test data set
-
Memorize the outputs
-
continuous and supervised learning via manual training on engine management process
-
Simple REST API endpoint
- Python 3.5
- pip
- virtualenvwrapper (optional)
- mongodb
git clone https://[email protected]/twbhackathon/skadoosh.git
cd skadoosh
[[ -n $VIRTUAL_ENV ]] && mkvirtualenv skadoosh -p `which python3.5`
[[ -z $VIRTUAL_ENV ]] && workon skadoosh
pip install -r engine/src/requirements.txt
python -m nltk.downloader all
touch engine/src/api/application.cfg
Enter the below 2 lines in application.cfg file (donot forget to modify the SECRET_KEY value :P)
SECRET_KEY = "some secret key[edit]"
MONGO_DBNAME = "skadooshCoreDb"
chmod +x run.sh
./run.sh
Let this terminal and open a new terminal tab/session
navigate to repo directory and do a workon skadoosh
Note: Whenever you want to run the app in new terminal tab/session
you need to execute once workon skadoosh
Integration Tests
chmod +x tests.sh
./tests.sh
curl "http://localhost:4000/api/help" -d text="what's my account balance?"
Soon...
- node (brew install node)
- npm
- npm install --save pngquant-bin
- grunt cli(npm install -g grunt-cli.)
- bower(brew install bower)
go to directory skadoosh/skin/web/
grunt serve