Thanks to visit codestin.com
Credit goes to github.com

Skip to content

DreamLab-AI/VisionFlow

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

VisionFlow: AI Agent Swarm Visualisation & Knowledge Graph Explorer

VisionFlow AI Agent Swarm Visualisation

Runtime Old Screenshot

Experience the future of knowledge management: Real-time 3D visualisation of AI agent swarms working alongside your Logseq knowledge graph.

Inspired by the innovative work of Prof. Rob Aspin: https://github.com/trebornipsa

Group In Octave

Chloe In Octave


๐Ÿš€ Quick Start

# Clone and deploy in minutes
git clone <repository-url>
cd ext

# Configure environment
cp .env.example .env

# Deploy with Docker
docker-compose up -d

# Access the application
open http://localhost:3001

๐Ÿ“š Full Quick Start Guide - Spawn your first AI swarm in 5 minutes!


๐Ÿ“Š System Architecture Documentation

๐Ÿ” Complete System Diagrams - Comprehensive architecture diagrams covering all data flows from user input to GPU rendering, including:

  • System overview and component architecture
  • Client-server real-time communication flows
  • Actor system message passing
  • GPU compute pipeline details
  • Authentication and authorization flows
  • External services integration
  • And much more...

Overview

VisionFlow bridges knowledge management and AI agent orchestration through:

  • High-Performance Backend: Rust + Actix actor system
  • 3D Visualisation: React + Three.js with WebGL/WebXR
  • GPU Acceleration: CUDA physics for 200+ agents at 60 FPS
  • Binary Protocol: 85% bandwidth reduction vs JSON
  • Distributed Consensus: Raft, Byzantine, CRDT protocols
  • AI Integration: Claude Flow MCP with 70+ orchestration tools

โœจ Key Features

๐ŸŒŸ AI Agent Swarm Visualisation

  • Real-time Hive Mind Display: Watch AI agents collaborate in stunning 3D
  • Claude Flow Integration: Full MCP (Model Context Protocol) support for agent orchestration
  • GPU-Accelerated Physics: Smooth 60 FPS visualisation of 200+ agents
  • Interactive Control: Spawn, configure, and command agent swarms in real-time
  • 12 Specialist Agent Types: Queen, Coordinator, Researcher, Coder, Analyst, and more

๐Ÿ“Š Dual Graph Architecture

  • Parallel Visualisation: View Logseq knowledge graphs and AI agent swarms simultaneously
  • Independent Physics: Each graph has its own optimised physics engine
  • Binary Protocol: 85% bandwidth reduction for massive scalability
  • Cross-Graph Analytics: Compare and link knowledge with AI agent activities
  • Unified Physics Engine: GPU-accelerated simulation for both graph types

๐Ÿง  Integrated AI Services

  • Conversational Q&A: Chat with your knowledge graph using RAGFlow and Perplexity
  • Voice Interaction: High-quality Text-to-Speech (TTS) and Speech-to-Text (STT)
  • AI-Powered Analytics: Clustering, anomaly detection, and intelligent insights
  • Semantic Analysis: Compare knowledge and agent graph structures

๐Ÿš€ Production-Ready Architecture

  • Rust Backend: High-performance Actix-based server with actor model
  • React/Three.js Frontend: Immersive 3D visualisation with WebXR support
  • Docker Deployment: One-command deployment with full MCP integration
  • Enterprise Features: Authentication, monitoring, and horizontal scaling

๐Ÿ—๏ธ System Architecture

graph TD
    subgraph "Data Sources"
        LS["Logseq Graph<br/>(Markdown Files)"]
        GH["GitHub Repository<br/>(Knowledge Base)"]
        CF["Claude Flow MCP<br/>(AI Agents)"]
    end

    subgraph "Frontend (React/Three.js)"
        A["Dual Graph Renderer<br/>(Logseq + Agents)"]
        B["Settings Panel<br/>(Zustand Store)"]
        C["Analytics Controls"]
        D["Command Palette"]
        E["Conversation Pane<br/>(RAGFlow/Perplexity)"]
    end

    subgraph "Communication Layer"
        F["REST API (JSON)<br/>Control & Data"]
        G["WebSocket (Binary)<br/>Position & Velocity"]
    end

    B & C & D & E --> F
    A <--> G

    subgraph "Backend (Rust/Actix)"
        H["API Handlers<br/>/api/*"]
        I["Socket Handler<br/>/wss"]
        J["Graph Actor<br/>(Dual Graphs)"]
        K["Settings Actor"]
        L["Claude Flow Actor"]
        M["GPU Compute Actor"]
        N["Client Manager Actor"]
        O["GitHub Service<br/>(File Sync)"]
        P["RAGFlow Service"]
    end

    F --> H
    G <--> I
    H --> J & K & L & O & P
    I <--> J & N
    J --> M

    subgraph "External Services"
        Q["TCP Port 9500<br/>Claude Flow MCP"]
        R["CUDA<br/>GPU Physics"]
        S["OpenAI/Perplexity<br/>AI Services"]
    end

    LS --> GH
    GH --> O
    L --> Q
    M --> R
    P --> S
    CF --> Q

    style LS fill:#e8f5e9
    style GH fill:#e8f5e9
    style CF fill:#fff3e0
    style Q fill:#e3f2fd
    style R fill:#fce4ec
Loading

AI Services Integration

graph TD
    subgraph Client
        UI["ConversationPane (React)"]
    end

    subgraph "Backend (Rust)"
        APIServer["API Server (Actix)"]
        RAGFlowSvc["RAGFlowService.rs"]
        PerplexitySvc["PerplexityService.rs"]
        SpeechSvc["SpeechService.rs"]
    end

    subgraph "External AI APIs"
        RAGFlowAPI["RAGFlow API"]
        PerplexityAPI["Perplexity API"]
        OpenAI_API["OpenAI API (TTS/STT)"]
        KokoroAPI_Ext["Kokoro API (TTS)"]
    end

    UI -->|REST API Call| APIServer
    APIServer --> RAGFlowSvc
    APIServer --> PerplexitySvc
    APIServer --> SpeechSvc

    RAGFlowSvc --> RAGFlowAPI
    PerplexitySvc --> PerplexityAPI
    SpeechSvc --> OpenAI_API
    SpeechSvc --> KokoroAPI_Ext

    OpenAI_API -->|Audio/Text| SpeechSvc
    KokoroAPI_Ext -->|Audio| SpeechSvc
    RAGFlowAPI -->|Text| RAGFlowSvc
    PerplexityAPI -->|Text| PerplexitySvc

    RAGFlowSvc -->|Response| APIServer
    PerplexitySvc -->|Response| APIServer
    SpeechSvc -->|Response| APIServer

    APIServer -->|Response| UI
Loading

๐Ÿ› ๏ธ Technology Stack

Backend

  • Rust with Actix-web framework for high-performance concurrent processing
  • CUDA for GPU-accelerated physics simulation
  • TCP for direct MCP communication with Claude Flow
  • WebSocket with binary protocol for real-time updates
  • Actor Model for safe concurrent state management

Frontend

  • React with TypeScript for type-safe component architecture
  • Three.js for GPU-accelerated 3D rendering
  • Zustand for centralised state management with single authoritative store
  • WebXR for AR/VR capabilities including Quest 3 support
  • Binary WebSocket Protocol for 85% bandwidth reduction

Infrastructure

  • Docker with multi-stage builds for containerisation
  • Nginx as reverse proxy with WebSocket support
  • GitHub Actions for CI/CD pipeline

๐Ÿ“ฆ Installation & Setup

System Requirements

  • Docker: 20.10+ with Docker Compose
  • Node.js: 20+ (for local development)
  • Rust: 1.75+ (for backend development)
  • GPU: NVIDIA GPU with CUDA support (optional but recommended)
  • Browser: Chrome/Firefox/Safari with WebGL support

Configuration

Create and configure your environment file:

cp .env_template .env

Key environment variables:

# Claude Flow MCP (TCP)
CLAUDE_FLOW_HOST=multi-agent-container
MCP_TCP_PORT=9500
MCP_TRANSPORT=tcp

# API Keys
OPENAI_API_KEY=your_key
PERPLEXITY_API_KEY=your_key
GITHUB_TOKEN=your_token  # Required for Logseq graph sync

# Optional Features
NO_GPU_COMPUTE=false  # Set to true if no GPU available

Deployment Options

Production Deployment

docker-compose up -d

Development Environment

docker-compose -f docker-compose.dev.yml up

๐Ÿ”ฎ What's New in VisionFlow

AI Agent Features

  • Hive Mind Spawning: Create coordinated AI agent swarms with different topologies (mesh, hierarchical, ring, star)
  • Real-time Monitoring: Track agent performance, task completion, and communication patterns
  • MCP Tool Integration: 70+ tools including task orchestration, memory management, and neural training
  • Binary Protocol: 28-byte format reduces bandwidth by 85% compared to JSON

Technical Achievements

  • GPU Physics: Process 200+ agents at 60 FPS with GPU-accelerated spring physics
  • Actor Model: Rust backend using Actix actors for safe concurrent state management
  • TCP Bridge: Clean separation between UI server and agent execution environment
  • Dual Graph System: Simultaneous Logseq knowledge graph and AI agent visualisation

๐Ÿ“Š Performance Benchmarks

Metric Performance
Max Agents (60 FPS) 200+
Position Update Latency < 5ms
Binary Protocol Efficiency 28 bytes/agent
Network Bandwidth (100 agents) 168 KB/s
Memory Usage 28 bytes/agent
GPU Acceleration 2.8-4.4x speed improvement

๐ŸŽฎ Advanced Features

Analytics Suite

  • Clustering Algorithms: Spectral, DBSCAN, K-Means++, Louvain
  • Anomaly Detection: Isolation Forest, LOF, Autoencoder
  • Real-Time Insights: AI-generated recommendations
  • Time-Travel: Navigate through graph state history

XR/AR Capabilities

  • Quest 3 Integration: Native AR support with passthrough
  • Hand Tracking: Natural interaction with joint position detection
  • Spatial UI: 3D interface elements with gesture recognition
  • Voice Controls: Audio commands and TTS responses

Authentication & Settings

  • Nostr Integration: Decentralised authentication
  • User-Specific Settings: Personalised configurations with cloud sync
  • Power User Mode: Advanced features and global settings access
  • Cross-Session Persistence: Maintain state across browser sessions

๐Ÿ“š Documentation Hub

Comprehensive documentation is now organised in the new docs/ structure:


๐Ÿงช Testing & Development

Run Tests

# Rust backend tests
cargo test

# Frontend tests
cd client && npm test

# TCP connection test
cargo run --bin test-tcp

# Performance benchmarks
cargo bench

Development Workflow

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes following the style guide
  4. Run tests and linting
  5. Submit a pull request

๐Ÿค Community & Support


๐Ÿ™ Acknowledgements

  • Prof Rob Aspin: For inspiring the project's vision and providing valuable resources
  • Claude Flow Team: For the amazing MCP hive-mind agent framework
  • Anthropic: For the Model Context Protocol specification and Claude AI models
  • OpenAI: For their advanced AI models powering the question-answering features
  • Perplexity AI and RAGFlow: For their AI services enhancing content processing
  • Three.js Community: For the robust 3D rendering capabilities
  • Actix Team: For the high-performance web framework powering the backend
  • Rust and React Communities: For building the foundation technologies

๐Ÿ“„ Licence

This project is licensed under the Mozilla Public License 2.0. See the LICENSE file for details.


Built using AI-driven development

VisionFlow - Visualising the future of AI multi-agent systems ๐Ÿš€

๐Ÿ“š Documentation

The complete documentation is organised in the new structured format:

๐Ÿ› ๏ธ Development Status

VisionFlow is in active development with regular updates to both functionality and documentation. The project showcases advanced multi-agent AI coordination with real-time visualisation capabilities.

Key Features

  • Multi-Agent Orchestration: Coordinate swarms of AI agents with different topologies
  • Real-time 3D Visualisation: GPU-accelerated rendering of agent behaviour
  • Consensus Protocols: Multiple distributed consensus implementations
  • Neural Pattern Recognition: AI-powered pattern detection and learning
  • Comprehensive API: RESTful and WebSocket interfaces for integration

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details on how to get involved.

๐Ÿ“„ Licence

This project is licensed under the Mozilla Public License 2.0 - see the LICENSE file for details.


About

Logseq Spring Thing Immersive & Agentic Knowledge Development Engine

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 52.5%
  • TypeScript 34.5%
  • Python 5.8%
  • Shell 3.2%
  • JavaScript 2.6%
  • Cuda 0.9%
  • Other 0.5%