Tags: FluxML/Flux.jl
Tags
[Diff since v0.16.2](v0.16.2...v0.16.3) **Merged pull requests:** - fix `cpu(dataloader)` (#2587) (@CarloLucibello) **Closed issues:** - Data loading & preprocessing pipeline feature (#1282) - Infinite time of gradient (#2585)
[Diff since v0.16.1](v0.16.1...v0.16.2) **Merged pull requests:** - Update deps & bump to 0.16.1 (#2574) (@pxl-th) **Closed issues:** - New Gradients ruin everything (#2580) - Failure to precompile on 1.12: cannot declare Flux.destructure public; it is already declared exported (#2583)
[Diff since v0.16.0](v0.16.0...v0.16.1) **Merged pull requests:** - Adding RecurrentLayers to ecosystem.md (#2555) (@MartinuzziFrancesco) - Fixed typo in recurrence documentation (#2556) (@MartinuzziFrancesco) - Adding return state option to recurrent layers (#2557) (@MartinuzziFrancesco) - update Schedulers docs (#2560) (@CarloLucibello) - collapse doc string in layers docs (#2562) (@CarloLucibello) - fix test enzyme (#2563) (@CarloLucibello) - Remove 2 items from public, to fix 1.12 (#2569) (@mcabbott) - Add reactant forward and reverse pass tests (#2576) (@wsmoses) - cleanup Reactant and Enzyme tests (#2578) (@CarloLucibello) **Closed issues:** - cell output is not clearly distinguishable from the state (#2548) - Flux.cpu and Flux.gpu no longer move data on views (#2553) - remove usage example of old optimiser (#2558) - Optimizing over `AbstractMatrix` subtypes (#2559) - introduce a FlattenLayer (#2561) - [enzyme] broken MeanPool gradient (#2564) - [enzyme] broken BatchNorm gradient (#2566) - [enyzme] broken recurrent cell loss (#2568)
[Diff since v0.15.2](v0.15.2...v0.16.0) **Merged pull requests:** - Recurrence layer (#2549) (@CarloLucibello) - Add `WeightNorm` reparametrization (#2550) (@pxl-th) - Change cells' return to `out, state` (#2551) (@CarloLucibello) - fix: `gpu_device` not defined in `Flux.DistributedUtils` (#2552) (@AntonOresten) **Closed issues:** - Feature request: Weight normalization (#942) - recurrent dropout (#1040) - Stacked RNN in Flux.jl? (#2452)
[Diff since v0.15.1](v0.15.1...v0.15.2) **Merged pull requests:** - hotfix LSTM ouput (#2547) (@CarloLucibello)
[Diff since v0.15.0](v0.15.0...v0.15.1) **Merged pull requests:** - Re-write "basics" page of docs (#2535) (@mcabbott) - Adding initialstates function to RNNs (#2541) (@MartinuzziFrancesco) - Update NEWS.md highlighting breaking changes (#2542) (@CarloLucibello) - relax identity test for devices (#2544) (@CarloLucibello) - fix `Flux.@functor` (#2546) (@CarloLucibello) **Closed issues:** - `Flux.@functor` is broken on 0.15 (#2545)
[Diff since v0.14.25](v0.14.25...v0.15.0) **Merged pull requests:** - Use `NNlib.bias_act!` (#2327) (@mcabbott) - Allow `Parallel(+, f)(x, y, z)` to work like broadcasting, and enable `Chain(identity, Parallel(+, f))(x, y, z)` (#2393) (@mcabbott) - Epsilon change in normalise for stability (#2421) (@billera) - Add more `Duplicated` methods for Enzyme.jl support (#2471) (@mcabbott) - Export Optimisers and remove params and Optimise from tests (#2495) (@CarloLucibello) - RNNs redesign (#2500) (@CarloLucibello) - Adjust docs & `Flux.@functor` for Functors.jl v0.5, plus misc. depwarns (#2509) (@mcabbott) - GPU docs (#2510) (@mcabbott) - CompatHelper: bump compat for Optimisers to 0.4, (keep existing compat) (#2520) (@github-actions[bot]) - Distinct init for kernel and recurrent (#2522) (@MartinuzziFrancesco) - Functors v0.5 + tighter version bounds (#2525) (@CarloLucibello) - deprecation of params and Optimise (continued) (#2526) (@CarloLucibello) - Bump codecov/codecov-action from 4 to 5 (#2527) (@dependabot[bot]) - updates for Functors v0.5 (#2528) (@CarloLucibello) - fix comment (#2529) (@oscardssmith) - set expand option as default for `@layer` (#2532) (@CarloLucibello) - misc stuff for v0.15 release (#2534) (@CarloLucibello) - Tweak quickstart.md (#2536) (@mcabbott) - Remove usage of global variables in linear and logistic regression tutorial training functions (#2537) (@christiangnrd) - Fix linear regression example (#2538) (@christiangnrd) - Update gpu.md (#2539) (@AdamWysokinski) **Closed issues:** - RNN layer to skip certain time steps (like `Masking` layer in keras) (#644) - Backprop through time (#648) - Initial state in RNNs should not be learnable by default (#807) - Bad recurrent layers training performance (#980) - flip function assumes the input sequence is a Vector or List, it can be Matrix as well. (#1042) - Regression in package load time (#1155) - Recurrent layers can't use Zeros() as bias (#1279) - Flux.destructure doesn't preserve RNN state (#1329) - RNN design for efficient CUDNN usage (#1365) - Strange result with gradient (#1547) - Call of Flux.stack results in StackOverfloxError for approx. 6000 sequence elements of a model output of a LSTM (#1585) - Gradient dimension mismatch error when training rnns (#1891) - Deprecate Flux.Optimisers and implicit parameters in favour of Optimisers.jl and explicit parameters (#1986) - Pull request #2007 causes Flux.params() calls to not get cached (#2040) - gradient of `Flux.normalise` return NaN when `std` is zero (#2096) - explicit differentiation for RNN gives wrong results (#2185) - Make RNNs blocked (and maybe fixing gradients along the way) (#2258) - Should everything be a functor by default? (#2269) - Flux new explicit API does not work but old implicit API works for a simple RNN (#2341) - Adding Simple Recurrent Unit as a recurrent layer (#2408) - deprecate Flux.params (#2413) - Implementation of `AdamW` differs from PyTorch (#2433) - `gpu` should warn if cuDNN is not installed (#2440) - device movement behavior inconsistent (#2513) - mark as public any non-exported but documented interface (#2518) - broken image in the quickstart (#2530) - Consider making the `:expand` option the default in `@layer` (#2531) - `Flux.params` is broken (#2533)
[Diff since v0.14.24](v0.14.24...v0.14.25) **Merged pull requests:** - reintroduce FluxCUDAAdaptor etc.. to smooth out the transition (#2512) (@CarloLucibello)
[Diff since v0.14.23](v0.14.23...v0.14.24) **Merged pull requests:** - deprecate properly GPU_BACKEND (#2511) (@CarloLucibello)
[Diff since v0.14.22](v0.14.22...v0.14.23) **Merged pull requests:** - Support for lecun normal weight initialization (#2311) (@RohitRathore1) - Some small printing upgrades (#2344) (@mcabbott) - simplify test machinery (#2498) (@CarloLucibello) - Correct dead link for "quickstart page" in README.md (#2499) (@zengmao) - make `gpu(x) = gpu_device()(x)` (#2502) (@CarloLucibello) - some cleanup (#2503) (@CarloLucibello) - unbreak some data movement cuda tests (#2504) (@CarloLucibello) **Closed issues:** - Add support for lecun normal weight initialization (#2290) - `using Flux, cuDNN` freezes, but `using Flux, CUDA, cuDNN` works (#2346) - Problem with RNN and CUDA. (#2352) - since new version: Flux throws error when for train! / update! even on quick start problem (#2358) - Cannot take `gradient` of L2 regularization loss (#2441) - Potential bug of RNN training flow (#2455) - Problem with documentation (#2485) - Flux has no Lecun Normalization weight init function? (#2491) - Zygote fails to differentiate through Flux.params on julia v0.11 (#2497) - ERROR: UndefVarError: `ADAM` not defined in `Main` in flux (#2507)
PreviousNext