Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Kaushikreddym/climdata

Repository files navigation

Welcome to climdata

image image

ClimData — Quickstart & Overview

ClimData provides a unified interface for extracting climate data from multiple providers (MSWX, CMIP, POWER, DWD, HYRAS), computing extreme indices, and converting results to tabular form. The ClimData (or ClimateExtractor) class is central: it manages configuration, extraction, index computation, and common I/O.

Key features

  • Provider-agnostic extraction (point / region / shapefile)
  • Unit normalization via xclim
  • Compute extreme indices using package indices
  • Convert xarray Datasets → long-form pandas DataFrames
  • Simple workflow runner for chained actions

Installation

  1. Create and activate a conda environment:
# create
conda create -n climdata python=3.11 -y

# activate
conda activate climdata
  1. Install via pip (PyPI, if available) or from source:
# from PyPI
pip install climdata

# or from local source (editable)
git clone <repo-url>
cd climdata
pip install -e .

Install optional extras as needed (e.g., xclim, shapely, hydra, dask):

pip install xarray xclim shapely hydra-core dask "pandas>=1.5"

Quick example

from climdata import ClimData  # or from climdata.utils.wrapper_workflow import ClimateExtractor

overrides = [
    "dataset=mswx",
    "lat=52.5",
    "lon=13.4",
    "time_range.start_date=2014-01-01",
    "time_range.end_date=2014-12-31",
    "variables=[tasmin,tasmax,pr]",
    "data_dir=/path/to/data",
    "index=tn10p",
]

# initialize
extractor = ClimData(overrides=overrides)

# extract data (returns xarray.Dataset and updates internal state)
ds = extractor.extract()

# compute index (uses cfg.index)
ds_index = extractor.calc_index(ds)

# convert to long-form dataframe and save
df = extractor.to_dataframe(ds_index)
extractor.to_csv(df, filename="index.csv")

Workflow runner

Use run_workflow for multi-step sequences:

result = extractor.run_workflow(actions=["extract", "calc_index", "to_dataframe", "to_csv"])

WorkflowResult contains produced dataset(s), dataframe(s), and filenames.

Documentation & API

  • See API docs under docs/api/ for detailed descriptions of ClimData/ClimateExtractor methods.
  • Examples and notebooks are under examples/.

Contributing

  • Run tests and lint locally.
  • Follow project coding and documentation conventions; submit PRs with tests.

License

Refer to the repository LICENSE file for terms.

⚡️ Tip

  • Make sure yq is installed:

    brew install yq   # macOS
    # OR
    pip install yq
  • To see available variables for a specific dataset (for example mswx), run:

    python download_location.py --cfg job | yq '.mappings.mswx.variables | keys'


⚙️ Key Features

  • Supports multiple weather data providers
  • Uses xarray for robust gridded data extraction
  • Handles curvilinear and rectilinear grids
  • Uses a Google Drive Service Account for secure downloads
  • Easily reproducible runs using Hydra

📡 Google Drive API Setup

This project uses the Google Drive API with a Service Account to securely download weather data files from a shared Google Drive folder.

Follow these steps to set it up correctly:


✅ 1. Create a Google Cloud Project

  • Go to Google Cloud Console.
  • Click “Select Project”“New Project”.
  • Enter a project name (e.g. WeatherDataDownloader).
  • Click “Create”.

✅ 2. Enable the Google Drive API

  • In the left sidebar, go to APIs & Services → Library.
  • Search for “Google Drive API”.
  • Click it, then click “Enable”.

✅ 3. Create a Service Account

  • Go to IAM & Admin → Service Accounts.
  • Click “Create Service Account”.
  • Enter a name (e.g. weather-downloader-sa).
  • Click “Create and Continue”. You can skip assigning roles for read-only Drive access.
  • Click “Done” to finish.

✅ 4. Create and Download a JSON Key

  • After creating the Service Account, click on its email address to open its details.
  • Go to the “Keys” tab.
  • Click “Add Key” → “Create new key” → choose JSON → click “Create”.
  • A .json key file will download automatically. Store it securely!

✅ 5. Store the JSON Key Securely

  • Place the downloaded .json key in the conf folder with the name service.json.

Setup Instructions from ERA5 api

1. CDS API Key Setup

  1. Create a free account on the Copernicus Climate Data Store

  2. Once logged in, go to your user profile

  3. Click on the "Show API key" button

  4. Create the file ~/.cdsapirc with the following content:

    url: https://cds.climate.copernicus.eu/api/v2
    key: <your-api-key-here>
  5. Make sure the file has the correct permissions: chmod 600 ~/.cdsapirc