-
Notifications
You must be signed in to change notification settings - Fork 282
Multimodal Embedding #14
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
[Title] Multimodal Embedding [Version] initial [Language] ENG [Package] langchain-experimental,pillow,open_clip_torch,scikit-learn,numpy,requests Langchain and Multimodal Embedding Tutorial - Serving the `OpenCLIP` Embedding model using `huggingface` and `langchain-experimental`. - In this example, we obtain `cosine similarity` between **'image(query)-image'** or **'text(query)-image'**, and based on this, we search the dataset for Top5 images most similar to the query.
현재 배정된 1명 reviewer github ID를 몰라서 못 넣고있음... 확인시 추가 예정 |
[Title] Multimodal Embedding [Version] hotfix [Language] ENG [Package] langchain-experimental,pillow,open_clip_torch,scikit-learn,numpy,requests Langchain and Multimodal Embedding Tutorial - Serving the `OpenCLIP` Embedding model using `huggingface` and `langchain-experimental`. - In this example, we obtain `cosine similarity` between **'image(query)-image'** or **'text(query)-image'**, and based on this, we search the dataset for Top5 images most similar to the query. Hotfix - 2024.12.30 - `Setting Image Data` section markdown change - `./data/for_embed_images` -> `./data/for_embed_images`
hotfix commit message
커밋 메시지 실수 했네요 ㅠㅠ |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
양질의 튜토리얼 commit 감사합니다.
테스트 이상 없고, 템플릿 Rule 도 이상 없습니다.
고생하셨습니다^^
제가 하고있는 쪽이 비전쪽 멀티모달 쪽을 하고 있어서 단순 LLM보다는 이쪽이 좀 더 익숙하긴 하네요..ㅎ AI 트랜드가 멀티모달쪽으로 발전해 나아가니까 우리 튜토리얼도 이런 부분이 추가되면 좋을것 같아서 추가 했습니다! 🤗 |
@pupba 정말 감사합니다. 멀티모달 쪽의 앞으로 신규 콘텐츠쪽도 기대 많이 하겠습니다! |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[Review]
- Review OS : MAC
- Template Rule 가이드를 준수 하였는가? : YES
- Table of Contents 의 링크가 원활하게 동작하는지 확인하였는가? : YES
- 이미지가 포함되어 있다면, 이미지의 파일명이 가이드를 준수하였는가? : YES
- import 구문이 예전 legacy 방식이 아닌 최신 버전을 따르는가? : YES
- 모든 코드가 동작에 오류 없이 동작하는가? : YES
- 기타 의견:
정말 양질의 콘텐츠이네요!
검수하면서 저도 큰 배움 얻어갑니다. 고생 많으셨습니다!
새해 복 많이 받으세요 :)
@krkrong 감사합니다 고생하셨어요 :) |
Multimodal Embedding
[Title] Multimodal Embedding
[Version] initial
[Language] ENG
[Package] langchain-experimental,pillow,open_clip_torch,scikit-learn,numpy,requests
Langchain and Multimodal Embedding Tutorial
OpenCLIP
Embedding model usinghuggingface
andlangchain-experimental
.cosine similarity
between 'image(query)-image' or 'text(query)-image', and based on this, we search the dataset for Top5 images most similar to the query.