From Objects to Events: Unlocking Complex Visual Understanding in Object Detectors via LLM-guided Symbolic Reasoning
You can run the framework either using the Python script directly or using the provided bash script:
# Give execution permission
chmod +x run_sr.sh
# Set API key (required for LLM functionality)
# Option 1: Using environment variable
export SR_API_KEY="your_api_key"
# Option 2: Using command line argument
./run_sr.sh -k "your_api_key"
# Run with default settings (LLM enabled)
./run_sr.sh
# Run without LLM assistance
./run_sr.sh --no-llm
# Run with custom config file
./run_sr.sh -c path/to/config.yaml
# Run with multiple options
./run_sr.sh --no-llm -c path/to/config.yaml
./run_sr.sh -k "your_api_key" -c path/to/config.yaml
-h, --help
: Show help information--no-llm
: Disable LLM functionality-c, --config <path>
: Specify configuration file path-k, --api-key <key>
: Set API key (can also be set via SR_API_KEY environment variable)
- Python 3.7+
- Required packages: see
requirements.txt
- API key for LLM service (when using LLM functionality)
If you find our paper and code useful in your research, please consider giving a star ⭐ and citation 📝:
@misc{zeng2025objectseventsunlockingcomplex,
title={From Objects to Events: Unlocking Complex Visual Understanding in Object Detectors via LLM-guided Symbolic Reasoning},
author={Yuhui Zeng and Haoxiang Wu and Wenjie Nie and Xiawu Zheng and Guangyao Chen and Yunhang Shen and Jun Peng and Yonghong Tian and Rongrong Ji},
year={2025},
eprint={2502.05843},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2502.05843},
}