Thanks to visit codestin.com
Credit goes to github.com

Skip to content

MSTF4/Applied-Machine-Learning-2018

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lecturer: Hossein Hajiabolhassan
The Webpage of the Course: Applied Machine Learning
Data Science Center, Shahid Beheshti University


Index:


Course Overview:

Machine learning is an area of artificial intelligence that provides systems the ability to 
automatically learn. Machine learning allows machines to handle new situations via analysis, 
self-training, observation and experience. The wonderful success of machine learning has made 
it the default method of choice for artificial intelligence experts. In this course, we review 
the fundamentals and algorithms of machine learning. 

TextBooks:

Book 1 Book 2 Book 3 Book 4 Book 5

Main TextBooks:
Extra Books:

Slides and Papers:

Recommended Slides & Papers:

  1. Toolkit Lab (Part 1)

  1. Introduction

  1. Empirical Risk Minimization

    A Formal Model – The Statistical Learning Framework & Empirical Risk Minimization
    Chapter 2 of Understanding Machine Learning: From Theory to Algorithms
    Exercises: 2.1, 2.2, and 2.3
  1. PAC Learning

    Chapter 3 of Understanding Machine Learning: From Theory to Algorithms
    Exercises: 3.2, 3.3, 3.4, 3.5, 3.6, 3.7
  1. The Bias-Complexity Tradeoff

    Chapter 5 of Understanding Machine Learning: From Theory to Algorithms
    Exercise: 5.2
Extra Resources:
  1. The VC-Dimension

Chapter 6 of Understanding Machine Learning: From Theory to Algorithms
Exercises: 6.2, 6.4, 6.6, 6.9, 6.10, and 6.11

  1. Toolkit Lab (Part 2)

  1. Linear Predictors

Chapter 9 of Understanding Machine Learning: From Theory to Algorithms
Exercises: 9.1, 9.3, 9.4, and 9.6

Extra Resources:
R (Programming Language):
  1. Decision Trees

Chapter 18 of Understanding Machine Learning: From Theory to Algorithms
Exercise: 18.2

Extra Resources:
R (Programming Language):
  1. Nearest Neighbor

Chapter 19 (Section 1) of Understanding Machine Learning: From Theory to Algorithms

Extra Resources:
R (Programming Language):
  1. Ensemble Methods

Chapter 10 of Understanding Machine Learning: From Theory to Algorithms and Chapter 8 of An Introduction to Statistical Learning: with Applications in R
Exercises: 10.1, 10.3, 10.4, and 10.5 from Understanding Machine Learning: From Theory to Algorithms

Extra Resources:
R (Programming Language):
  1. Model Selection and Validation

Chapter 11 of Understanding Machine Learning: From Theory to Algorithms
Exercises: 11.1 and 11.2 from Understanding Machine Learning: From Theory to Algorithms

Extra Resources:
R (Programming Language):
  1. Neural Networks

Chapter 20 of Understanding Machine Learning: From Theory to Algorithms

Extra Resources:
R (Programming Language):
  1. Convex Learning Problems

Chapter 12 of Understanding Machine Learning: From Theory to Algorithms

Extra Resources:
  1. Regularization and Stability

Chapter 13 of Understanding Machine Learning: From Theory to Algorithms

Extra Resources:
R (Programming Language):
  1. Support Vector Machines

Chapter 15 of Understanding Machine Learning: From Theory to Algorithms

Extra Resources:
R (Programming Language):

Class Time and Location:

Saturday and Monday 08:00-09:30 AM (Spring 2019), Room 204/1.

Projects:

Projects are programming assignments that cover the topic of this course. Any project is written by
Jupyter Notebook. Projects will require the use of Python 3.7, as well as
additional Python libraries as follows.

  • Python 3.7: An interactive, object-oriented, extensible programming language.
  • NumPy: A Python package for scientific computing.
  • Pandas: A Python package for high-performance, easy-to-use data structures and data analysis tools.
  • Scikit-Learn: A Python package for machine learning.
  • Matplotlib: A Python package for 2D plotting.
  • SciPy: A Python package for mathematics, science, and engineering.
  • IPython: An architecture for interactive computing with Python.

Practical Guide:

Fascinating Guide to Use Python Libraries (Machine Learning):

Google Colab:

Google Colab is a free cloud service and it supports free GPU!

Latex:

The students can include mathematical notation within markdown cells using LaTeX in their Jupyter Notebooks.

  • A Brief Introduction to LaTeX PDF
  • Math in LaTeX PDF
  • Sample Document PDF

Useful NoteBooks:

Grading:

  • Projects and Midterm – 50%
  • Endterm – 50%

Final Exam:

Final Examination: Saturday 1398/03/25, 08:30-10:30

Prerequisites:

General mathematical sophistication; and a solid understanding of Algorithms, Linear Algebra, and Probability Theory, at the advanced undergraduate or beginning graduate level, or equivalent.

Linear Algebra:

Probability and Statistics:

Discrete Mathematics:

Course (Videos, Lectures, Assignments): MIT OpenCourseWare (Discrete Mathematics)

Topics:

Have a look at some reports of Kaggle or Stanford students (CS224N, CS224D) to get some general inspiration.

Account:

It is necessary to have a GitHub account to share your projects. It offers plans for both private repositories and free accounts. Github is like the hammer in your toolbox, therefore, you need to have it!

Academic Honor Code:

Honesty and integrity are vital elements of the academic works. All your submitted assignments must be entirely your own (or your own group's).

We will follow the standard of Department of Mathematical Sciences approach:

  • You can get help, but you MUST acknowledge the help on the work you hand in
  • Failure to acknowledge your sources is a violation of the Honor Code
  • You can talk to others about the algorithm(s) to be used to solve a homework problem; as long as you then mention their name(s) on the work you submit
  • You should not use code of others or be looking at code of others when you write your own: You can talk to people but have to write your own solution/code

Questions?

I will be having office hours for this course on Monday (09:30 AM--12:00 AM). If this is not convenient, email me at [email protected] or talk to me after class.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published