Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Roderickkkk/TreeOperation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

TreeOperation

TreeOperation 参考自:https://blog.csdn.net/weixin_39875629/article/details/114137064 根据b站小刘讲源码的视频稍作修改 控制台打印红黑树的代码:

package com.roderick;
import com.roderick.RBTree.RBNode;
public class TreeOperation {
    
    public static int getTreeDepth(RBTree.RBNode root) {
        return root == null ? 0 : (1 + Math.max(getTreeDepth(root.getLeft()), getTreeDepth(root.getRight())));

    }

    private static void writeArray(RBTree.RBNode currNode, int rowIndex, int columnIndex, String[][] res, int treeDepth) {
        // 保证输入的树不为空

        if (currNode == null) return;

        // 先将当前节点保存到二维数组中

        res[rowIndex][columnIndex] = String.valueOf(currNode.getKey()+"-"+(currNode.isColor()? "R":"B")+"");

        // 计算当前位于树的第几层

        int currLevel = ((rowIndex + 1) / 2);

        // 若到了最后一层,则返回

        if (currLevel == treeDepth) return;

        // 计算当前行到下一行,每个元素之间的间隔(下一行的列索引与当前元素的列索引之间的间隔)

        int gap = treeDepth - currLevel - 1;

        // 对左儿子进行判断,若有左儿子,则记录相应的"/"与左儿子的值

        if (currNode.getLeft() != null) {
            res[rowIndex + 1][columnIndex - gap] = "/";

            writeArray(currNode.getLeft(), rowIndex + 2, columnIndex - gap * 2, res, treeDepth);

        }

        // 对右儿子进行判断,若有右儿子,则记录相应的"\"与右儿子的值

        if (currNode.getRight() != null) {
            res[rowIndex + 1][columnIndex + gap] = "\\";

            writeArray(currNode.getRight(), rowIndex + 2, columnIndex + gap * 2, res, treeDepth);

        }

    }

    public static void show(RBTree.RBNode root) {
        if (root == null) System.out.println("EMPTY!");

        // 得到树的深度
        int treeDepth = getTreeDepth(root);
        // 最后一行的宽度为2的(n - 1)次方乘3,再加1
        // 作为整个二维数组的宽度
        int arrayHeight = treeDepth * 2 - 1;
        int arrayWidth = (2 << (treeDepth - 2)) * 3 + 1;
        // 用一个字符串数组来存储每个位置应显示的元素
        String[][] res = new String[arrayHeight][arrayWidth];
        // 对数组进行初始化,默认为一个空格
        for (int i = 0; i < arrayHeight; i ++) {
            for (int j = 0; j < arrayWidth; j ++) {
                res[i][j] = " ";
            }
        }

        // 从根节点开始,递归处理整个树
        // res[0][(arrayWidth + 1)/ 2] = (char)(root.val + '0');
        writeArray(root, 0, arrayWidth/ 2, res, treeDepth);
        // 此时,已经将所有需要显示的元素储存到了二维数组中,将其拼接并打印即
        for (String[] line: res) {
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < line.length; i ++) {
                sb.append(line[i]);
                if (line[i].length() > 1 && i <= line.length - 1) {
                    i += line[i].length() > 4 ? 2: line[i].length() - 1;
                }
            }
            System.out.println(sb.toString());
        }
    }
}

About

TreeOperation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published