This repository contains the code for the paper:
Liang, W., Allison, B. Z., Xu, R., He, X., Wang, X., Cichocki, A., & Jin, J. (2025).
SecNet: A second order neural network for MI-EEG.
Information Processing & Management, 62(3), 104012.
SecNet is a neural network model designed to enhance motor imagery (MI) decoding from EEG signals by leveraging second-order information.
- Python 3.10
- PyTorch 2.2.2
- Numpy 1.26.3 (Numpy 2.x.x may cause errors in EEG processing)
- Other dependencies can be found in
requirements.txt.
-
Clone the repository:
git clone https://github.com/SecNet-mi/SecNet.git cd SecNet -
Install the required packages:
pip install -r requirements.txt
The data used in this study are already publicly available at the following: OpenBMI in http://dx.doi.org/10.5524/100542; BCI competition IV 2a in https://bbci.de/competition/iv/.
- Prepare your EEG dataset in the required format.
RawData/
├── BCICIV_2a/A01E.gdf...
└── OpenBMI/
├── session1/sess01_subj01_EEG_MI.mat ...
└── session2/sess02_subj01_EEG_MI.mat ...
After downloaded the dataset, you need to run:
python DataLoader\LoadData.py- Train the model using the provided script:
python ho.py
For more details on usage, check the documentation in the codebase.
If these codes help you, please cite:
@article{liang2025secnet,
title={SecNet: A second order neural network for MI-EEG},
author={Liang, Wei and Allison, Brendan Z and Xu, Ren and He, Xinjie and Wang, Xingyu and Cichocki, Andrzej and Jin, Jing},
journal={Information Processing \& Management},
volume={62},
number={3},
pages={104012},
year={2025},
publisher={Elsevier}
}
This project is licensed under the MIT License - see the LICENSE file for details.