Thanks to visit codestin.com
Credit goes to github.com

Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 13 additions & 2 deletions alibi/explainers/tests/test_partial_dependence.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import sys
from copy import deepcopy
from typing import Dict, List, Optional, Tuple, Union
from packaging import version

import matplotlib.pyplot as plt
import numpy as np
Expand All @@ -17,6 +18,7 @@
from sklearn.multioutput import MultiOutputClassifier
from sklearn.pipeline import Pipeline
from sklearn.utils import Bunch, shuffle
import sklearn

from alibi.api.defaults import DEFAULT_DATA_PD, DEFAULT_META_PD
from alibi.api.interfaces import Explanation
Expand Down Expand Up @@ -387,19 +389,28 @@ def test_sklearn_numerical(rf_classifier, iris_data, features, params):
@pytest.mark.parametrize('params', [
{
'percentiles': (0, 1),
'grid_resolution': np.inf,
'method': 'brute',
'kind': 'average'
}
])
def test_sklearn_categorical(rf_classifier, adult_data, features, params):
""" Checks `alibi` pd black-box implementation against the `sklearn` implementation for categorical features."""

rf, preprocessor = rf_classifier
rf_pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('predictor', rf)])

# subsample data for faster computation
X_train = adult_data['X_train'][:100]

# Behaviour depends on sklearn version, See https://github.com/SeldonIO/alibi/pull/940#issuecomment-1623783025
sklearn_version = version.parse(sklearn.__version__)
if sklearn_version >= version.parse('1.3.0'):
categorical_names = adult_data['metadata']['category_map']
categorical_names = list(categorical_names.keys())
params.update(categorical_features=categorical_names)
else:
params.update(grid_resolution=np.inf)

# compute `sklearn` explanation
exp_sklearn = partial_dependence(X=X_train,
estimator=rf_pipeline,
Expand Down Expand Up @@ -432,7 +443,7 @@ def test_sklearn_categorical(rf_classifier, adult_data, features, params):
@pytest.mark.parametrize('params', [
{
'percentiles': (0, 1),
'grid_resolution': np.inf,
'grid_resolution': 30,
'method': 'recursion',
'kind': 'average'
}
Expand Down