HKU MSc project about developing a web app which creates NFTs with use of T2I generative models
Check out our Official website.
- General Info
- Models Used
- NFT website
- Web framework
- Project Status
- Model Installation
- Sample Usage
- Todo
- Acknowledgements
- This study aims to work out a practical web application that meets potential NFT buyers' requirements in making their customized NFTs, which uses the Generative model to convert text description to semantically consistent NFT style images. Then the images would be converted into NFT products on Ethereum.
- HuggingFace Pretrained Stable diffusion model
- Pytorch implementation StyleGAN2-ADA trained on public kaggle NFT dataset
- ImageMixer https://github.com/kirigiricloud/stable-diffusion
Frontend : Vue 3 + JavaScript
Backend : Nodejs + MySQL
Project is: Done
Python version >= 3.7
cd stable-diffusion
pip install -r requirements.txt
python main-sd.py prompt user_name
python main-mixer.py user_name
prompt: String, text requirment user_name: String, provided user name for registered user
python main-sd.py 'a photo of an astronaut riding a horse on mars' test_user
python main-mixer.py test_user
- building skeleton of web app
- choose stable diffusion model to use
- preprocess NFT dataset
- train StyleGAN2
- application basic functionalities
- image-mixer: adjust the file to make it work in local
- back-end: wallet
- front-end: profile
- front-end: login/register
- back-end: mint
- Model: create usable Python script - Stable Diffusion
- Model: create usable Python script - image-mixer
- Connect front-end and back-end
- System testing
- This project is inspired by HKU MSc Computer Science Department
- Thanks to all team members