Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 9de5b07

Browse files
committed
Update 01.Linear-DP-01.md
1 parent f65dbef commit 9de5b07

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

Contents/10.Dynamic-Programming/03.Linear-DP/01.Linear-DP-01.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -386,7 +386,7 @@ class Solution:
386386

387387
###### 3. 状态转移方程
388388

389-
以 $arr[j]$、$arr[k]$ 结尾的斐波那契式子序列的最大长度 = 满足 $arr[i] + arr[j] = arr[k]$ 条件下,以 $arr[i]$、$arr[j]$ 结尾的斐波那契式子序列的最大长度加 $1$。即状态转移方程为:$dp[j][k] = max_{(A[i] + A[j] = A[k]i < j < k)}(dp[i][j] + 1)$。
389+
以 $arr[j]$、$arr[k]$ 结尾的斐波那契式子序列的最大长度 = 满足 $arr[i] + arr[j] = arr[k]$ 条件下,以 $arr[i]$、$arr[j]$ 结尾的斐波那契式子序列的最大长度加 $1$。即状态转移方程为:$dp[j][k] = max_{(A[i] + A[j] = A[k], \quad i < j < k)}(dp[i][j] + 1)$。
390390

391391
###### 4. 初始条件
392392

0 commit comments

Comments
 (0)