Thanks to visit codestin.com Credit goes to github.com
We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent f65dbef commit 9de5b07Copy full SHA for 9de5b07
Contents/10.Dynamic-Programming/03.Linear-DP/01.Linear-DP-01.md
@@ -386,7 +386,7 @@ class Solution:
386
387
###### 3. 状态转移方程
388
389
-以 $arr[j]$、$arr[k]$ 结尾的斐波那契式子序列的最大长度 = 满足 $arr[i] + arr[j] = arr[k]$ 条件下,以 $arr[i]$、$arr[j]$ 结尾的斐波那契式子序列的最大长度加 $1$。即状态转移方程为:$dp[j][k] = max_{(A[i] + A[j] = A[k],i < j < k)}(dp[i][j] + 1)$。
+以 $arr[j]$、$arr[k]$ 结尾的斐波那契式子序列的最大长度 = 满足 $arr[i] + arr[j] = arr[k]$ 条件下,以 $arr[i]$、$arr[j]$ 结尾的斐波那契式子序列的最大长度加 $1$。即状态转移方程为:$dp[j][k] = max_{(A[i] + A[j] = A[k], \quad i < j < k)}(dp[i][j] + 1)$。
390
391
###### 4. 初始条件
392
0 commit comments