Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Add support for logit_bias and logit_bias_type parameters #351

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions llama_cpp/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -1380,6 +1380,7 @@ def create_chat_completion(
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
logits_processor: Optional[LogitsProcessorList] = None,
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
"""Generate a chat completion from a list of messages.

Expand Down Expand Up @@ -1421,6 +1422,7 @@ def create_chat_completion(
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
logits_processor=logits_processor,
)
if stream:
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
Expand Down
53 changes: 51 additions & 2 deletions llama_cpp/server/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,13 +249,14 @@ class CreateCompletionRequest(BaseModel):
)
presence_penalty: Optional[float] = presence_penalty_field
frequency_penalty: Optional[float] = frequency_penalty_field
logit_bias: Optional[Dict[str, float]] = Field(None)
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)

# ignored or currently unsupported
model: Optional[str] = model_field
n: Optional[int] = 1
logprobs: Optional[int] = Field(None)
best_of: Optional[int] = 1
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None)

# llama.cpp specific parameters
Expand All @@ -274,6 +275,39 @@ class Config:
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)


def make_logit_bias_processor(
llama: llama_cpp.Llama,
logit_bias: Dict[str, float],
logit_bias_type: Optional[Literal["input_ids", "tokens"]],
):
if logit_bias_type is None:
logit_bias_type = "input_ids"

to_bias: Dict[int, float] = {}
if logit_bias_type == "input_ids":
for input_id, score in logit_bias.items():
input_id = int(input_id)
to_bias[input_id] = score

elif logit_bias_type == "tokens":
for token, score in logit_bias.items():
token = token.encode('utf-8')
for input_id in llama.tokenize(token, add_bos=False):
to_bias[input_id] = score

def logit_bias_processor(
input_ids: List[int],
scores: List[float],
) -> List[float]:
new_scores = [None] * len(scores)
for input_id, score in enumerate(scores):
new_scores[input_id] = score + to_bias.get(input_id, 0.0)

return new_scores

return logit_bias_processor


@router.post(
"/v1/completions",
response_model=CreateCompletionResponse,
Expand All @@ -291,9 +325,16 @@ async def create_completion(
"n",
"best_of",
"logit_bias",
"logit_bias_type",
"user",
}
kwargs = body.dict(exclude=exclude)

if body.logit_bias is not None:
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
])

if body.stream:
send_chan, recv_chan = anyio.create_memory_object_stream(10)

Expand Down Expand Up @@ -372,11 +413,12 @@ class CreateChatCompletionRequest(BaseModel):
stream: bool = stream_field
presence_penalty: Optional[float] = presence_penalty_field
frequency_penalty: Optional[float] = frequency_penalty_field
logit_bias: Optional[Dict[str, float]] = Field(None)
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)

# ignored or currently unsupported
model: Optional[str] = model_field
n: Optional[int] = 1
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None)

# llama.cpp specific parameters
Expand Down Expand Up @@ -413,9 +455,16 @@ async def create_chat_completion(
exclude = {
"n",
"logit_bias",
"logit_bias_type",
"user",
}
kwargs = body.dict(exclude=exclude)

if body.logit_bias is not None:
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
])

if body.stream:
send_chan, recv_chan = anyio.create_memory_object_stream(10)

Expand Down