Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Refactor backpropagation #437

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 28, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 17 additions & 13 deletions learning.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@
from utils import (
removeall, unique, product, mode, argmax, argmax_random_tie, isclose, gaussian,
dotproduct, vector_add, scalar_vector_product, weighted_sample_with_replacement,
weighted_sampler, num_or_str, normalize, clip, sigmoid, print_table, DataFile
weighted_sampler, num_or_str, normalize, clip, sigmoid, print_table,
DataFile, sigmoid_derivative
)

import copy
Expand Down Expand Up @@ -568,13 +569,17 @@ def predict(example):
return predict


def random_weights(min_value, max_value, num_weights):
return [random.uniform(min_value, max_value) for i in range(num_weights)]


def BackPropagationLearner(dataset, net, learning_rate, epochs):
"""[Figure 18.23] The back-propagation algorithm for multilayer network"""
# Initialise weights
for layer in net:
for node in layer:
node.weights = [random.uniform(-0.5, 0.5)
for i in range(len(node.weights))]
node.weights = random_weights(min_value=-0.5, max_value=0.5,
num_weights=len(node.weights))

examples = dataset.examples
'''
Expand Down Expand Up @@ -612,10 +617,11 @@ def BackPropagationLearner(dataset, net, learning_rate, epochs):
delta = [[] for i in range(n_layers)]

# Compute outer layer delta
err = [t_val[i] - o_nodes[i].value
for i in range(o_units)]
delta[-1] = [(o_nodes[i].value) * (1 - o_nodes[i].value) *
(err[i]) for i in range(o_units)]

# Error for the MSE cost function
err = [t_val[i] - o_nodes[i].value for i in range(o_units)]
# The activation function used is the sigmoid function
delta[-1] = [sigmoid_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]

# Backward pass
h_layers = n_layers - 2
Expand All @@ -624,11 +630,9 @@ def BackPropagationLearner(dataset, net, learning_rate, epochs):
h_units = len(layer)
nx_layer = net[i+1]
# weights from each ith layer node to each i + 1th layer node
w = [[node.weights[k] for node in nx_layer]
for k in range(h_units)]
w = [[node.weights[k] for node in nx_layer] for k in range(h_units)]

delta[i] = [(layer[j].value) * (1 - layer[j].value) *
dotproduct(w[j], delta[i+1])
delta[i] = [sigmoid_derivative(layer[j].value) * dotproduct(w[j], delta[i+1])
for j in range(h_units)]

# Update weights
Expand Down Expand Up @@ -754,7 +758,8 @@ def LinearLearner(dataset, learning_rate=0.01, epochs=100):
X_col = [ones] + X_col

# Initialize random weigts
w = [random.uniform(-0.5, 0.5) for _ in range(len(idx_i) + 1)]
num_weights = len(idx_i) + 1
w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)

for epoch in range(epochs):
err = []
Expand All @@ -769,7 +774,6 @@ def LinearLearner(dataset, learning_rate=0.01, epochs=100):
for i in range(len(w)):
w[i] = w[i] + learning_rate * (dotproduct(err, X_col[i]) / num_examples)


def predict(example):
x = [1] + example
return dotproduct(w, x)
Expand Down
17 changes: 16 additions & 1 deletion tests/test_learning.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from learning import parse_csv, weighted_mode, weighted_replicate, DataSet, \
PluralityLearner, NaiveBayesLearner, NearestNeighborLearner, \
NeuralNetLearner, PerceptronLearner, DecisionTreeLearner, \
euclidean_distance, grade_learner, err_ratio
euclidean_distance, grade_learner, err_ratio, random_weights
from utils import DataFile


Expand Down Expand Up @@ -124,3 +124,18 @@ def test_perceptron():

assert grade_learner(perceptron, tests) > 1/2
assert err_ratio(perceptron, iris) < 0.4


def test_random_weights():
min_value = -0.5
max_value = 0.5
num_weights = 10

test_weights = random_weights(min_value, max_value, num_weights)

assert len(test_weights) == num_weights

for weight in test_weights:
assert weight >= min_value and weight <= max_value


8 changes: 8 additions & 0 deletions tests/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,14 @@ def test_gaussian():
assert gaussian(3,1,3) == 0.3989422804014327


def test_sigmoid_derivative():
value = 1
assert sigmoid_derivative(value) == 0

value = 3
assert sigmoid_derivative(value) == -6


def test_step():
assert step(1) == step(0.5) == 1
assert step(0) == 1
Expand Down
4 changes: 4 additions & 0 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,6 +249,10 @@ def clip(x, lowest, highest):
return max(lowest, min(x, highest))


def sigmoid_derivative(value):
return value * (1 - value)


def sigmoid(x):
"""Return activation value of x with sigmoid function"""
return 1/(1 + math.exp(-x))
Expand Down