Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Added activation functions #968

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 4, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 20 additions & 3 deletions learning.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
removeall, unique, product, mode, argmax, argmax_random_tie, isclose, gaussian,
dotproduct, vector_add, scalar_vector_product, weighted_sample_with_replacement,
weighted_sampler, num_or_str, normalize, clip, sigmoid, print_table,
open_data, sigmoid_derivative, probability, norm, matrix_multiplication, relu, relu_derivative
open_data, sigmoid_derivative, probability, norm, matrix_multiplication, relu, relu_derivative,
tanh, tanh_derivative, leaky_relu, leaky_relu_derivative, elu, elu_derivative
)

import copy
Expand Down Expand Up @@ -746,8 +747,15 @@ def BackPropagationLearner(dataset, net, learning_rate, epochs, activation=sigmo
# The activation function used is relu or sigmoid function
if node.activation == sigmoid:
delta[-1] = [sigmoid_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
else:
elif node.activation == relu:
delta[-1] = [relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
elif node.activation == tanh:
delta[-1] = [tanh_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
elif node.activation == elu:
delta[-1] = [elu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
else:
delta[-1] = [leaky_relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]


# Backward pass
h_layers = n_layers - 2
Expand All @@ -762,9 +770,18 @@ def BackPropagationLearner(dataset, net, learning_rate, epochs, activation=sigmo
if activation == sigmoid:
delta[i] = [sigmoid_derivative(layer[j].value) * dotproduct(w[j], delta[i+1])
for j in range(h_units)]
else:
elif activation == relu:
delta[i] = [relu_derivative(layer[j].value) * dotproduct(w[j], delta[i+1])
for j in range(h_units)]
elif activation == tanh:
delta[i] = [tanh_derivative(layer[j].value) * dotproduct(w[j], delta[i+1])
for j in range(h_units)]
elif activation == elu:
delta[i] = [elu_derivative(layer[j].value) * dotproduct(w[j], delta[i+1])
for j in range(h_units)]
else:
delta[i] = [leaky_relu_derivative(layer[j].value) * dotproduct(w[j], delta[i+1])
for j in range(h_units)]

# Update weights
for i in range(1, n_layers):
Expand Down
41 changes: 40 additions & 1 deletion utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import random
import math
import functools
import numpy as np
from itertools import chain, combinations


Expand Down Expand Up @@ -273,9 +274,47 @@ def sigmoid(x):
"""Return activation value of x with sigmoid function"""
return 1 / (1 + math.exp(-x))



def relu_derivative(value):
if value > 0:
return 1
else:
return 0

def elu(x, alpha=0.01):
if x > 0:
return x
else:
return alpha * (math.exp(x) - 1)

def elu_derivative(value, alpha = 0.01):
if value > 0:
return 1
else:
return alpha * math.exp(value)

def tanh(x):
return np.tanh(x)

def tanh_derivative(value):
return (1 - (value ** 2))

def leaky_relu(x, alpha = 0.01):
if x > 0:
return x
else:
return alpha * x

def leaky_relu_derivative(value, alpha=0.01):
if value > 0:
return 1
else:
return alpha

def relu(x):
return max(0, x)

def relu_derivative(value):
if value > 0:
return 1
Expand Down