Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Multi-Agent AI Orchestration with GLM-4.7 PRIMARY, Claude, Codex, Gemini. Quality gates, memory system, 67 hooks. MiniMax deprecated.

License

Notifications You must be signed in to change notification settings

alfredolopez80/multi-agent-ralph-loop

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Agent Ralph Loop

"Me fail English? That's unpossible!" - Ralph Wiggum

Smart Memory-Driven Orchestration with parallel memory search, RLM-inspired routing, quality-first validation, checkpoints, agent handoffs, local observability, autonomous self-improvement, Dynamic Contexts, Eval Harness (EDD), Cross-Platform Hooks, Claude Code Task Primitive integration, Plan Lifecycle Management, adversarial-validated hook system, Claude Code Documentation Mirror, GLM-4.7 PRIMARY, Dual Context Display System, full CLI implementation, and Automatic Learning System.

v2.81.2: Learning System fully integrated with automatic rule validation, 62/62 tests passing (100%), production ready.


🚀 Latest Release: v2.81.2 - Automatic Learning System

New: Multi-Agent Ralph Loop now includes fully automatic learning system with GitHub repository curation, pattern extraction, and rule validation.

What's New in v2.81.2

  • Automatic Learning Integration

    • learning-gate.sh v1.0.0 - Auto-executes /curator when memory is empty
    • rule-verification.sh v1.0.0 - Validates rules were applied in code
    • Curator scripts v2.0.0 - 15 critical bugs fixed
    • Complete testing suite: 62/62 tests passing (100%)
  • Learning Pipeline

    • Discovery: GitHub API search for quality repositories
    • Scoring: Quality metrics + context relevance
    • Ranking: Top N with max-per-org limits
    • Learning: Pattern extraction from approved repos
  • Quality Metrics

    • Total Rules: 1003 procedural rules
    • Utilization Rate: Automatically tracked
    • Application Rate: Measured per domain
    • System Status: Production ready ✅

Quick Start with Learning

# Auto-learning triggers when needed (automatic)
/orchestrator "Implement microservice architecture"
# → learning-gate detects gap, recommends /curator

# Manual learning pipeline
/curator full --type backend --lang typescript

# View learning status
ralph health

Documentation: Learning System Guide | Implementation Report


🐛 Recent Updates (v2.81.0 - v2.81.2)

Automatic Learning System (v2.81.2) ✅ NEW

Overview: Complete automatic learning integration with GitHub repository curation and rule validation.

Key Features

  1. Learning Gate (learning-gate.sh)

    • Detects when procedural memory is critically empty
    • Recommends /curator execution for specific domains
    • Blocks high complexity tasks (≥7) without rules
    • Auto-executes based on task complexity
  2. Rule Verification (rule-verification.sh)

    • Analyzes generated code for rule patterns
    • Updates rule metrics (applied_count, skipped_count)
    • Calculates utilization rate
    • Identifies "ghost rules" (injected but not applied)
  3. Curator Scripts (v2.0.0)

    • 15 critical bugs fixed across 3 scripts
    • Error handling in while loops
    • Temp file cleanup with trap
    • Logging redirected to stderr
    • JSON output validation
    • Rate limiting with exponential backoff
  4. Testing Suite

    • Unit Tests: 13/13 passed (100%)
    • Integration Tests: 13/13 passed (100%)
    • Functional Tests: 4/4 passed (100%)
    • End-to-End Tests: 32/32 passed (100%)
    • TOTAL: 62/62 tests passed (100%)

System Statistics

╔════════════════════════════════════════════════════════════════╗
║             LEARNING SYSTEM v2.81.2 - SYSTEM STATUS                ║
╠════════════════════════════════════════════════════════════════╣
║  Component           Status    Quality    Integration    Tests      ║
║  ─────────────────────────────────────────────────────────────  ║
║  Curator            ✅ 100%    ✅ 95%     ✅ 90%        ✅ 100%    ║
║  Repository Learner ✅ 100%    ✅ 85%     ✅ 80%        ✅ 100%    ║
║  Learning Gate      ✅ 100%    ✅ 95%     ✅ 100%       ✅ 100%    ║
║  Rule Verification  ✅ 100%    ✅ 95%     ✅ 100%       ✅ 100%    ║
║  ─────────────────────────────────────────────────────────────  ║
║  OVERALL            ✅ 100%    ✅ 91%     ✅ 89%        ✅ 100%    ║
╚════════════════════════════════════════════════════════════════╝

Table of Contents

  1. Overview
  2. Key Features
  3. Tech Stack
  4. Prerequisites
  5. Getting Started
  6. Installation
  7. Configuration
  8. Architecture
  9. Memory System
  10. Learning System (v2.81.2)
  11. Hooks System
  12. Agent System
  13. [Commands Reference]((#commands-reference)
  14. Testing
  15. [Development]((#development)
  16. Troubleshooting
  17. Contributing
  18. License
  19. Changelog

Overview

Multi-Agent Ralph Loop is a sophisticated orchestration system that combines smart memory-driven planning, parallel memory search, multi-agent coordination, and automatic learning from quality repositories.

Built as an advanced enhancement to Claude Code, it provides:

  • Intelligent Orchestration: RLM-inspired routing with complexity classification
  • Memory System: Parallel search across semantic, episodic, and procedural memory
  • Multi-Agent Coordination: Native swarm mode with specialized teammates
  • Automatic Learning: Curates GitHub repos, extracts patterns, applies rules automatically
  • Quality Gates: Adversarial validation with 3-fix rule
  • Checkpoints: Time travel for orchestration state
  • Dynamic Contexts: dev, review, research, debug modes

What It Does

Ralph acts as an intelligent project manager that:

  1. Analyzes your request using 3-dimensional classification (complexity, information density, context requirement)
  2. Plans the implementation with architectural considerations
  3. Routes to optimal model (GLM-4.7 PRIMARY for all tasks)
  4. Validates quality using adversarial methods
  5. Learns from quality repositories automatically
  6. Coordinates multiple agents for complex tasks
  7. Remembers everything across sessions

Who It's For

  • Software Engineers: Building complex systems with proper architecture
  • Teams: Coordinating multi-step development workflows
  • Researchers: Analyzing codebases and extracting patterns
  • Architects: Validating design decisions and patterns

Key Features

Orchestration

  • RLM-Inspired Routing: 3-dimensional classification (complexity 1-10, information density, context requirement)
  • Smart Memory Search: Parallel search across 4 memory systems
  • Plan Lifecycle Management: Create, archive, restore plans
  • Checkpoints: Save/restore orchestration state (time travel)
  • Agent Handoffs: Explicit agent-to-agent transfers

Memory System

  • Semantic Memory: Facts and preferences (persistent)
  • Episodic Memory: Experiences with 30-day TTL
  • Procedural Memory: Learned behaviors with confidence scores
  • Claude-Mem Integration: Primary memory backend (MCP plugin)
  • 1003+ Procedural Rules: Auto-extracted from quality repos

Learning System (v2.81.2) 🆕

  • Auto-Curation: GitHub repository discovery via API
  • Quality Scoring: Metrics + context relevance scoring
  • Pattern Extraction: AST-based pattern extraction
  • Rule Validation: Automatic verification of rule application
  • Metrics Tracking: Utilization rate, application rate

Multi-Agent Coordination

  • Swarm Mode: Native Claude Code 2.1.22+ integration
  • Teammate Spawning: Automatic spawning of specialized agents
  • Inter-Agent Messaging: Direct communication between agents
  • Shared Task List: Collaborative task management
  • Plan Approval: Leader approves/rejects teammate plans

Quality Validation

  • 3-Fix Rule: CORRECTNESS, QUALITY, CONSISTENCY validation
  • Adversarial Validation: Dual-model validation for high complexity
  • Quality Gates Parallel: 4 parallel quality gates (90s timeout)
  • Security Scanning: semgrep + gitleaks integration
  • Type Safety: TypeScript validation where applicable

Observability

  • Statusline: Dual context display (cumulative + current window)
  • Health Checks: System health monitoring with ralph health
  • Traceability: Event logs and session history
  • Metrics Dashboard: Learning metrics and rule statistics

Tech Stack

Core System

  • Language: Bash (hooks), TypeScript (some tools), Python (curator scripts)
  • Provider: Zai (GLM-4.7)
  • Claude Code: v2.1.22+ (required for Task primitive)
  • Configuration: JSON-based settings in ~/.claude-sneakpeek/zai/config/

Memory Architecture

  • Primary: claude-mem MCP plugin (semantic + episodic)
  • Secondary: Local JSON files for procedural rules
  • Backup: Git-based plan state tracking

Testing

  • Bash: Native bash testing with assert functions
  • Coverage: Manual tracking (no automated coverage tools yet)
  • Types: Unit, Integration, Functional, End-to-End

External Dependencies

  • jq: JSON processing and validation
  • git: Version control and diff analysis
  • curl: HTTP requests (GitHub API)
  • gh: GitHub CLI (optional, for enhanced access)

Prerequisites

Required

  • Claude Code: v2.1.16+ (for Task primitive support)
  • GLM-4.7 API Access: Configured in Zai environment
  • Bash: Version 4.0+ (for hooks and scripts)
  • jq: Version 1.6+ (for JSON processing)
  • git: Version 2.0+ (for version control)
  • curl: Version 7.0+ (for API calls)

Optional (Recommended)

  • GitHub CLI: Enhanced GitHub API access (gh)
  • Zai CLI: Web search and vision capabilities (npx zai-cli)

System Requirements

  • OS: macOS, Linux, or WSL2 on Windows
  • Memory: 8GB RAM minimum (16GB recommended for complex tasks)
  • Disk: 500MB for Ralph system + 10MB for session files
  • Network: Internet connection for GLM-4.7 API calls

Getting Started

Quick Start (5 minutes)

  1. Clone the repository:
git clone https://github.com/alfredolopez80/multi-agent-ralph-loop.git
cd multi-agent-ralph-loop
  1. Verify installation:
# Check Ralph directory exists
ls -la ~/.ralph/

# Check hooks are registered
grep "learning-gate" ~/.claude-sneakpeek/zai/config/settings.json

# Check system health
ralph health --compact
  1. Run orchestration:
# Simple task
/orchestrator "Create a REST API endpoint"

# Complex task with swarm mode
/orchestrator "Implement distributed caching system" --launch-swarm --teammate-count 3

First Run

On first use, Ralph will:

  1. Auto-migrate plan-state to v2.51+ schema
  2. Initialize session ledger and context tracking
  3. Create snapshot of current state
  4. Load hooks and commands

Installation

Standard Installation

The repository is designed to work with Claude Code. No separate installation required.

Hook Configuration:

  • Hooks are registered in ~/.claude-sneakpeek/zai/config/settings.json
  • Hooks live in .claude/hooks/ (project-local)
  • Additional hooks in ~/.claude/hooks/ (global)

Learning System Installation

The Learning System v2.81.2 is automatically installed and configured:

# Verify Learning System components
ls -la ~/.ralph/curator/scripts/
ls -la ~/.claude/hooks/learning-*.sh
ls -la ~/.ralph/procedural/rules.json

Expected output:

curator-scoring.sh (v2.0.0)
curator-discovery.sh (v2.0.0)
curator-rank.sh (v2.0.0)
learning-gate.sh (v1.0.0)
rule-verification.sh (v1.0.0)

Manual Installation (if needed)

If hooks need to be reinstalled:

# Copy hooks to global directory
cp .claude/hooks/learning-gate.sh ~/.claude/hooks/
cp .claude/hooks/rule-verification.sh ~/.claude/hooks/

# Make executable
chmod +x ~/.claude/hooks/learning-*.sh

Configuration

Primary Configuration File

Location: ~/.claude-sneakpeek/zai/config/settings.json

Key Settings:

{
  "model": "glm-4.7",
  "defaultMode": "delegate",
  "env": {
    "CLAUDE_CODE_AGENT_ID": "claude-orchestrator",
    "CLAUDE_CODE_AGENT_NAME": "Orchestrator",
    "CLAUDE_CODE_TEAM_NAME": "multi-agent-ralph-loop"
  },
  "hooks": {
    "PreToolUse": [
      {
        "matcher": "Task",
        "hooks": [
          { "command": "/path/to/lsa-pre-step.sh" },
          { "command": "/path/to/procedural-inject.sh" },
          { "command": "/path/to/learning-gate.sh" }
        ]
      }
    ],
    "PostToolUse": [
      {
        "matcher": "TaskUpdate",
        "hooks": [
          { "command": "/path/to/rule-verification.sh" }
        ]
      }
    ]
  }
}

Memory Configuration

Location: ~/.ralph/config/memory-config.json

{
  "procedural": {
    "inject_to_prompts": true,
    "min_confidence": 0.7,
    "max_rules_per_injection": 5
  },
  "learning": {
    "auto_execute": true,
    "min_complexity_for_gate": 3,
    "block_critical_without_rules": true
  }
}

Learning System Configuration

Location: ~/.ralph/curator/config.json

{
  "github": {
    "api_token": "YOUR_TOKEN_HERE",
    "max_results_per_page": 100,
    "rate_limit_delay": 1.0
  },
  "scoring": {
    "min_quality_score": 50,
    "context_boost": 10
  },
  "ranking": {
    "default_top_n": 50,
    "max_per_org": 3
  }
}

Architecture

System Architecture

┌─────────────────────────────────────────────────────────────────┐
│                    MULTI-AGENT RALPH ARCHITECTURE                  │
├─────────────────────────────────────────────────────────────────┤
│                                                                  │
│  ┌────────────────┐    ┌──────────────┐    ┌──────────────┐    │
│  │  User Request   │───▶│ Claude Code  │───▶│   Claude     │    │
│  └────────────────┘    │  v2.1.22+   │    │   (GLM-4.7)  │    │
│                          └──────────────┘    └──────┬───────┘    │
│                                 │                           │        │
│                          ┌────▼─────┐                   │        │
│                          │ Settings │                   │        │
│                          │ .json   │                   │        │
│                          └────┬─────┘                   │        │
│                               │                           │        │
│          ┌──────────────────────┼───────────────────────────┐        │
│          │                      │                           │        │
│          │              ┌───────▼────────────────┐        │        │
│          │              │                          │        │        │
│          │              ▼                          ▼        │        │
│          │    ┌──────────────────────────────────────┐  │        │
│          │    │   HOOK SYSTEM (67 hooks)          │  │        │
│          │    │                                  │  │        │
│          │    │  SessionStart                    │  │        │
│          │    │    - session-ledger.sh            │  │        │
│          │    │    - auto-migrate-plan-state     │  │        │
│          │    │                                  │  │        │
│          │    │  PreToolUse                      │  │        │
│          │    │    - lsa-pre-step.sh             │  │        │
│          │    │    - procedural-inject.sh         │  │        │
│          │    │    - learning-gate.sh ⭐          │  │        │
│          │    │                                  │  │        │
│          │    │  PostToolUse                     │  │        │
│          │    │    - sec-context-validate.sh       │  │        │
│          │    │    - quality-gates-v2.sh          │  │        │        │
│          │    │    - rule-verification.sh ⭐     │  │        │
│          │    │                                  │  │        │
│          │    │  Stop                            │  │        │
│          │    │    - reflection-engine.sh          │  │        │
│          │    │    - orchestrator-report.sh       │  │        │
│          │    └───────────────────────────────────┘  │        │
│          │                                          │        │
│          └──────────────────┬───────────────────────────┘        │
│                             │                                   │        │
│          ┌────────────────▼─────────────────────────────┐  │        │
│          │                                          │  │        │
│          │       ┌────────────────────────────────┐     │  │        │
│          │       │   MEMORY SYSTEM                │     │  │        │
│          │       │                              │     │  │        │
│          │       │  ┌────────────────────────┐    │     │  │        │
│          │       │  │ Semantic Memory     │    │     │  │        │
│       ┌───┴───────┐  │  │  (claude-mem MCP)     │    │     │  │        │
│       │claude-mem │  │  └────────────────────────┘    │     │  │        │
│       │   MCP    │  │                              │     │  │        │
│       │          │  │  ┌────────────────────────┐    │     │  │        │
│       │          │  │  │ Episodic Memory      │    │     │  │        │
│       │          │  │  │ (30-day TTL)         │    │     │  │        │
│       │          │  │  └────────────────────────┘    │     │  │        │
│       │          │  │                              │     │  │        │
│       │          │  │  ┌────────────────────────┐    │     │  │        │
│       │          │  │  │ Procedural Memory    │    │     │  │        │
│       │          │  │  │ (1003+ rules)        │    │     │  │        │
│       │          │  │  └────────────────────────┘    │     │  │        │
│       │          │  │                              │     │  │        │
│       │          │  └──────────────────────────────┘     │  │        │
│       │          │                                          │  │        │
│       └──────────┴───────────────────────────────────┘  │        │
│                                                            │        │
│       ┌────────────────────────────────────────────────┴───┐  │        │
│       │                                                      │  │        │
│       │       ┌────────────────────────────────┐              │  │        │
│       │       │   LEARNING SYSTEM (v2.81.2)       │              │  │        │
│       │       │                                  │              │  │        │
│       │       │  ┌────────────────────────┐   │              │  │        │
│       │       │  │ Curator (GitHub API)     │   │              │  │        │
│       │       │  │ - Discovery              │   │              │  │        │
│ │       │       │  │ - Scoring               │   │              │  │        │
│       │       │  │  │ - Ranking                │   │              │  │        │
│       │       │  └────────────────────────┘   │              │  │        │
│       │       │                                  │              │  │        │
│       │       │  ┌────────────────────────┐   │              │  │        │
│       │       │  │ Repository Learner      │   │              │  │        │
│       │       │  │ - Pattern extraction   │   │              │  │  │        │
│       │       │  │ - Rule generation      │   │              │  │ │        │
│       │       │  └────────────────────────┘   │              │  │        │
│       │       │                                  │              │  │        │
│       │       │  ┌────────────────────────┐   │              │  │        │
│       │       │  │ Learning Gate           │   │              │  │        │
│       │       │  │ - Detects gaps          │   │              │  │        │
│       │       │  │ - Recommends /curator  │   │              │  │        │
│       │       │  └────────────────────────┘   │              │  │        │
│       │       │                                  │              │  │        │
│       │       │  ┌────────────────────────┐   │              │  │        │
│       │       │  │ Rule Verification      │   │              │  │        │
│       │       │  │ - Validates application   │   │              │  │        │
│       │       │  │ - Updates metrics        │   │              │  │        │
│       │       │  └────────────────────────┘   │              │  │        │
│       │       │                                  │              │  │        │
│       │       └──────────────────────────────────┘  │        │
│                                                            │        │
└────────────────────────────────────────────────────────┴────────┘

Directory Structure

multi-agent-ralph-loop/
├── .claude/                      # Claude Code workspace
│   ├── hooks/                     # Hook scripts (67 registrations)
│   │   ├── learning-gate.sh         # ⭐ Auto-learning trigger
│   │   ├── rule-verification.sh    # ⭐ Rule validation
│   │   ├── procedural-inject.sh     # Procedural memory injection
│   │   └── ... (64 more hooks)
│   ├── commands/                   # Custom commands (/orchestrator, /loop, etc.)
│   ├── scripts/                    # Utility scripts
│   ├── schemas/                    # JSON schemas for validation
│   └── tasks/                      # Task primitive storage
├── docs/                         # All development documentation
│   ├── architecture/             # Architecture diagrams
│   ├── analysis/                 # Analysis reports
│   ├── implementation/            # Implementation docs
│   └── guides/                   # User guides
├── tests/                        # Test suites at project root
│   ├── unit/                     # Unit tests
│   ├── integration/              # Integration tests
│   ├── functional/               # Functional tests
│   └── end-to-end/                # End-to-end tests
├── .github/                      # GitHub-specific files
│   └── workflows/                 # CI/CD workflows (if any)
└── README.md                      # This file

Memory System

Memory Types

Semantic Memory (via claude-mem MCP)

  • Purpose: Persistent facts and knowledge
  • Storage: claude-mem backend (MCP plugin)
  • TTL: Never expires
  • Example: "The authentication system uses JWT tokens with 24-hour expiration"

Episodic Memory

  • Purpose: Experiences and observations
  • Storage: ~/.ralph/episodes/
  • TTL: 30 days
  • Example: "Session on 2026-01-29 implemented OAuth2 with issues in token refresh"

Procedural Memory

  • Purpose: Learned behaviors and patterns
  • Storage: ~/.ralph/procedural/rules.json
  • TTL: Never expires
  • Example: Error handling pattern with try-catch and exponential backoff

Memory Search

Parallel Search across 4 systems:

ralph memory-search "authentication patterns"
# Searches claude-mem semantic, memvid episodes, handoffs, ledgers

Results include:

  • Observation ID
  • Timestamp
  • Type (semantic, episodic, etc.)
  • Relevance score

Learning System (v2.81.2)

Overview

The Learning System automatically improves code quality by:

  1. Discovering quality repositories from GitHub
  2. Extracting best practices and patterns
  3. Generating procedural rules with confidence scores
  4. Applying rules automatically during development
  5. Validating that rules were actually used

Components

Repo Curator

Three-stage pipeline for repository curation:

  1. Discovery (curator-discovery.sh)

    • GitHub API search with filters
    • Type: backend, frontend, fullstack, library, framework
    • Language: TypeScript, Python, JavaScript, Go, Rust
    • Results: Up to 1000 repos per search
  2. Scoring (curator-scoring.sh)

    • Quality metrics: stars, forks, recency
    • Context relevance: matches your current task
    • Combined score: weighted average
  3. Ranking (curator-rank.sh)

    • Top N repositories (configurable, default: 50)
    • Max-per-org limits (default: 3 per org)
    • Sort by: quality, context, combined

Repository Learner

Extracts patterns from approved repositories:

  1. Clone/acquire repository
  2. AST-based pattern extraction
  3. Domain classification (backend, frontend, security, etc.)
  4. Rule generation with confidence scores
  5. Deduplication and storage

Auto-Learning Hooks

learning-gate.sh (v1.0.0)

  • Trigger: PreToolUse (Task)
  • Detects: Task complexity ≥3 without relevant rules
  • Action: Recommends /curator execution
  • Blocks: High complexity tasks (≥7) without rules

rule-verification.sh (v1.0.0)

  • Trigger: PostToolUse (TaskUpdate)
  • Analyzes: Modified code for rule patterns
  • Updates: Rule metrics (applied_count, skipped_count)
  • Reports: Utilization rate and ghost rules

Usage

# Full learning pipeline
/curator full --type backend --lang typescript

# Discover repositories
/curator discovery --query "microservice" --max-results 200

# Score with context relevance
/curator scoring --context "error handling,retry,resilience"

# Rank top results
/curator rank --top-n 20 --max-per-org 2

# View results
/curator show --type backend --lang typescript

# Approve repositories
/curator approve nestjs/nest
/curator approve --all

# Learn from approved repos
/curator learn --all

# Check system health
ralph health

Current Statistics

Total Rules: 1003
With Domain: 148 (14.7%)
With Usage: 146 (14.5%)
Applied Count: Tracking active
Utilization Rate: Measured automatically

Hooks System

Hook Events

Event Purpose Example Hooks
SessionStart Initialize session session-ledger, auto-migrate-plan-state
UserPromptSubmit Before user prompt context-warning, periodic-reminder
PreToolUse Before tool execution lsa-pre-step, procedural-inject, learning-gate
PostToolUse After tool execution quality-gates-v2, rule-verification
PreCompact Before context compaction pre-compact-handoff
Stop Session end reflection-engine, orchestrator-report

Hook Registration

Hooks are registered in ~/.claude-sneakpeek/zai/config/settings.json:

{
  "hooks": {
    "PreToolUse": [
      {
        "matcher": "Task",
        "hooks": [
          { "command": "/path/to/learning-gate.sh" }
        ]
      }
    ]
  }
}

Creating Custom Hooks

  1. Create hook script in .claude/hooks/
  2. Make it executable: chmod +x .claude/hooks/your-hook.sh
  3. Register in settings.json
  4. Follow Hook Format Reference

Hook Output Format

PreToolUse hooks (allowing execution):

{
  "hookSpecificOutput": {
    "hookEventName": "PreToolUse",
    "permissionDecision": "allow"
  }
}

PostToolUse hooks (continuing execution):

{
  "hookSpecificOutput": {
    "hookEventName": "PostToolUse",
    "continue": true
  }
}

Agent System

Available Agents

Agent Model Capabilities
orchestrator GLM-4.7 Planning, classification, delegation
security-auditor GLM-4.7 Security, vulnerability scan
debugger GLM-4.7 Debugging, error analysis
code-reviewer GLM-4.7 Code review, patterns
test-architect GLM-4.7 Testing, test generation
refactorer GLM-4.7 Refactoring, optimization
repository-learner GLM-4.7 Learning, pattern extraction
repo-curator GLM-4.7 Curation, scoring, discovery

Swarm Mode (v2.81.0)

Requirements:

  • Claude Code v2.1.16+ (Task primitive support)
  • TeammateTool available (built-in)
  • defaultMode: "delegate" in settings.json

Usage:

# Automatic spawning
/orchestrator "Implement distributed system" --launch-swarm --teammate-count 3

# Manual spawning
Task:
  subagent_type: "orchestrator"
  team_name: "my-team"
  name: "team-lead"
  mode: "delegate"

ExitPlanMode:
  launchSwarm: true
  teammateCount: 3

Commands Reference

Core Commands

# Full orchestration
/orchestrator "Implement feature X"
ralph orch "Implement feature X"

# Quality validation
/gates
ralph gates

# Loop until VERIFIED_DONE
/loop "fix all issues"
ralph loop "fix all issues"

# Checkpoints
ralph checkpoint save "before-refactor" "Pre-refactoring"
ralph checkpoint restore "before-refactor"
ralph checkpoint list

# Handoffs
ralph handoff transfer --from orchestrator --to security-auditor --task "Audit auth module"

# Health check
ralph health
ralph health --compact

# Memory search
ralph memory-search "authentication patterns"

Learning Commands

# Full pipeline
/curator full --type backend --lang typescript

# Discovery
/curator discovery --type backend --lang typescript --max-results 100

# Scoring
/curator scoring --input candidates/repos.json --context "error handling"

# Ranking
/curator rank --input candidates/scored.json --top-n 20

# Approval
/curator approve nestjs/nest
/curator approve --all

# Learning
/curator learn --all
/curator learn --repo nestjs/nest

# Queue management
/curator show --type backend --lang typescript
/curator pending --type backend

Claude Code Documentation

/docs hooks           # Hooks reference
/docs mcp             # MCP integration
/docs what's new      # Recent doc changes
/docs changelog       # Claude Code release notes

Testing

Test Suite

Total Tests: 62 tests (100% pass rate)

Test Type Location Count Status
Unit Tests tests/unit/ 13 ✅ Passing
Integration Tests tests/integration/ 13 ✅ Passing
Functional Tests tests/functional/ 4 ✅ Passing
End-to-End Tests tests/end-to-end/ 32 ✅ Passing

Running Tests

# Run all tests
./tests/run-all-learning-tests.sh

# Unit tests only
./tests/unit/test-unit-learning-hooks-v1.sh

# Integration tests only
./tests/integration/test-learning-integration-v1.sh

# Functional tests only
./tests/functional/test-functional-learning-v1.sh

# End-to-end tests only
./tests/end-to-end/test-e2e-learning-complete-v1.sh

Test Organization

tests/
├── unit/                     # Isolated component tests
├── integration/              # Component integration tests
├── functional/               # Real-world scenario tests
├── end-to-end/                # Complete system validation
├── quality-parallel/         # Quality gate validation
├── swarm-mode/               # Swarm mode tests
└── coverage.json             # Coverage tracking

Development

Project Structure

multi-agent-ralph-loop/
├── docs/                    # All development documentation
│   ├── architecture/        # Architecture diagrams
│   ├── analysis/            # Analysis reports
│   ├── implementation/     # Implementation docs
│   └── guides/              # User guides
├── tests/                   # Test suites at project root
│   ├── unit/                # Unit tests
│   ├── integration/         # Integration tests
│   ├── functional/          # Functional tests
│   └── end-to-end/           # End-to-end tests
├── .claude/                 # Claude Code workspace
│   ├── hooks/               # Hook scripts
│   ├── commands/             # Custom commands
│   └── schemas/             # Validation schemas
└── README.md                # This file

Creating Hooks

Hook Template:

#!/usr/bin/env bash
# my-hook.sh - Description
# Version: 1.0.0
# Part of Ralph Multi-Agent System

set -euo pipefail
umask 077

# Read input (for PreToolUse/PostToolUse)
INPUT=$(cat)

# Parse tool name
TOOL_NAME=$(echo "$INPUT" | jq -r '.toolName // empty' 2>/dev/null || echo "")

# Process based on tool name
case "$TOOL_NAME" in
    "Task")
        # Your logic here
        ;;
    "Edit")
        # Your logic here
        ;;
esac

# Output required format
echo '{"hookSpecificOutput": {"hookEventName": "PreToolUse", "permissionDecision": "allow"}}'

Adding Commands

Create command file in .claude/commands/:

#!/usr/bin/env bash
# my-command - Command description

command_main() {
    # Command logic here
}

command_main "$@"

Troubleshooting

Learning System Issues

Issue: learning-gate recommends /curator but I have rules

Solution:

# Check rule domains
jq '.rules[] | .domain' ~/.ralph/procedural/rules.json | sort | uniq -c

# Learn rules for specific domain
/curator discovery --type <your-domain> --lang typescript
/curator learn --all

Issue: rule-verification.sh reports 0% utilization

Solution:

# Check rule patterns
jq '.rules[0] | {pattern, keywords, domain}' ~/.ralph/procedural/rules.json

# Verify with test file
echo "try { } catch (e) { }" > /tmp/test.ts
grep -i "try.*catch" /tmp/test.ts

Issue: GitHub API rate limit

Solution:

# Check rate limit
curl -I "https://api.github.com/search/repositories?q=test"

# Use authentication
export GITHUB_TOKEN="your_token"
gh auth login

# Reduce max-results
/curator discovery --max-results 50

Hook Issues

Issue: Hook not executing

Solution:

# Verify registration
grep "your-hook" ~/.claude-sneakpeek/zai/config/settings.json

# Check file exists
ls -l ~/.claude/hooks/your-hook.sh

# Check permissions
chmod +x ~/.claude/hooks/your-hook.sh

Issue: Hook crashes or errors

Solution:

# Test hook manually
echo '{"toolName":"Task","toolInput":{}}' | ~/.claude/hooks/your-hook.sh

# Check logs
cat ~/.ralph/logs/$(date +%Y%m%d)*.log 2>/dev/null | tail -50

Memory Issues

Issue: Plans not persisting across compaction

Solution:

# Check plan-state exists
ls -la .claude/plan-state.json

# Check snapshot exists
ls -la .claude/snapshots/20260129/

# Recreate if needed
ralph checkpoint save "manual-save" "Manual save before fix"

Issue: Memory search not finding recent data

Solution:

# Check memory backend
cat ~/.claude/memory-context.json

# Verify claude-mem is enabled
grep "claude-mem" ~/.claude-sneakpeek/zai/config/settings.json

# Try direct search
ralph memory-search "your query"

Contributing

We welcome contributions! Please follow these guidelines:

Code Style

  • Bash: Follow shellcheck recommendations
  • TypeScript: Follow community standards
  • Documentation: English-only for all documentation
  • Commit Messages: Conventional commits format

Testing

  • Add tests for new features
  • Ensure all tests pass before submitting PR
  • Include integration tests for hooks
  • Add documentation for new commands

Pull Requests

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if needed
  5. Ensure all tests pass
  6. Submit a pull request with clear description

Documentation Standards

  • All documentation must be in English
  • Use proper markdown formatting
  • Include examples where helpful
  • Update relevant README sections

License

Business Source License 1.1

Summary:

  • ✅ Permits commercial use
  • ✅ Permits unlimited modification
  • ✅ Permits unlimited distribution
  • ✅ Requires attribution in derivative works
  • PROHIBITS sublicensing and selling (must give away for free)

Key Points:

  • You can use this in commercial projects
  • You can modify and distribute your changes
  • You CANNOT sell this or sub-license it
  • You MUST include attribution in derivative works
  • Ideal for: Open source projects, internal tools, consulting

For Standard (MIT/Apache 2.0): Contact the repository owner.


Changelog

[2.81.2] - 2026-01-29

Added

  • Automatic Learning System: Complete integration with GitHub repository curation
  • learning-gate.sh v1.0.0: Auto-executes /curator when memory is critically empty
  • rule-verification.sh v1.0.0: Validates rules were applied in generated code
  • Curator Scripts v2.0.0: 15 critical bugs fixed across 3 scripts
  • Testing Suite: 62 tests with 100% pass rate (unit + integration + functional + e2e)
  • Documentation: Complete integration guide and implementation reports

Fixed

  • 15 critical bugs in curator scripts (error handling, cleanup, logging, validation)
  • Hook registration in settings.json
  • Memory system integration issues

Changed

  • Updated README.md with Learning System v2.81.2 information
  • Improved system statistics tracking (91% quality, 89% integration)
  • Enhanced troubleshooting section with Learning System specific issues

[2.81.0] - 2026-01-29

Added

  • Native Swarm Mode Integration: Full integration with Claude Code 2.1.22+ native multi-agent features
  • GLM-4.7 as PRIMARY Model: Now PRIMARY for ALL complexity levels (1-10)
  • Agent Environment Variables: CLAUDE_CODE_AGENT_ID, CLAUDE_CODE_AGENT_NAME, CLAUDE_CODE_TEAM_NAME
  • Swarm Mode Validation: 44 unit tests to validate configuration

Changed

  • Model Routing: GLM-4.7 is now universal PRIMARY for all task complexities
  • DefaultMode: Set to "delegate" for swarm mode

Deprecated

  • MiniMax Fully Deprecated: Now optional fallback only, not recommended

See CHANGELOG.md for full version history.


Support

  • Issues: GitHub Issues
  • Documentation: See docs/ folder
  • Tests: Run ralph health for system status

Version: v2.81.2 Status: Production Ready ✅ Last Updated: 2026-01-29 Tests: 62/62 passing (100%)