Thanks to visit codestin.com
Credit goes to github.com

Skip to content

antibloch/kprnet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

87 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Video

Installation

Install apex and the packages in requirements.txt

Experiment

Download pre-trained resnext_cityscapes_2p.pth. The path should be given in model_dir. CityScapes pretraining will be added later.

The result from paper is trained on 8 16GB GPUs (total batch size 24).

To train run:

python train_kitti.py \
  --semantic-kitti-dir path_to_semantic_kitti \
  --model-dir location_where_your_pretrained_model_is \
  --checkpoint-dir your_output_dir


# e.g: python train_kitti.py --semantic-kitti-dir kitti_dataset --model-dir pretrained_model  --checkpoint-dir output_kitti
# where kitti_dataset contains dataset/sequences/00..
python run_inference.py --semantic-kitti-dir kitti_dataset/dataset/sequences --output-path pred_stuff  --checkpoint-path pretrained_total_model/kpr_trained.pth
# Velodyne Scan
python run_inference_new.py --checkpoint_path pretrained_total_model/kpr_trained.pth --point_folder data --output_path points_segment --W 2048 --H 64 --fov_up 2.0 --fov_down -24.9 --ring_major --visualize --inverted_depth

# Ouster Scan
python run_inference_new.py --checkpoint_path pretrained_total_model/kpr_trained.pth --point_folder data --output_path points_segment --W 1024 --H 64 --fov_up 44.07 --fov_down -45.73  --visualize --inverted_depth

SemanticKITT Testing

python run_inference.py --semantic-kitti-dir kitti_ds/dataset/sequences --output-path pred_stuff  --checkpoint-path checkpoints/epoch10.pth
python view_inference.py --points kitti_ds/dataset/sequences/08/velodyne --labels kitti_ds/dataset/sequences/08/labels --predictions pred_stuff/sequences/08/predictions --results results

Ouster Testing

python run_inference_new_labelled.py --point_folder refined_data/pc --labels_folder refined_data/label --output_path pred_stuff_ouster  --checkpoint_path checkpoints/epoch10.pth
python view_inference_new_labelled_allscans.py --points pred_stuff_ouster_points --labels pred_stuff_ouster_labels --predictions pred_stuff_ouster_predictions --results results

The fully trained model weights can be downloaded here .

output_video-ezgif com-cut

Acknowledgments

KPConv

RangeNet++

HRNet

Reference

KPRNet appears in ECCV workshop Perception for Autonomous Driving.

@article{kochanov2020kprnet,
  title={KPRNet: Improving projection-based LiDAR semantic segmentation},
  author={Kochanov, Deyvid and Nejadasl, Fatemeh Karimi and Booij, Olaf},
  journal={arXiv preprint arXiv:2007.12668},
  year={2020}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%