Self-supervision via Controlled Transformation and Unpaired Self-conditioning for Low-light Image Enhancement
This is the PyTorch implementation for our IEEE TIM paper:
**Aupendu Kar, Sobhan Kanti Dhara, Debashis Sen, Prabir Kumar Biswas. Self-supervision via Controlled Transformation and Unpaired Self-conditioning for Low-light Image Enhancement.
To perform Low-light Image Enhancement using Our pre-trained model.
python main.py --data_test LIME+DICM --test_only \
--rgb_range 1.0 --save_folder None \
--model SelfEnNet --exp SelfEnNet --iterations 2 --level 1 \
--trained_model model_dir/SelfEnNet/SelfEnNet.pth.tar'
1.1 Download the Training Set
1.2 Put the unpaired training dataset in data as follows:
data
└── train
├── dataset_name
├── low
├── name1.png
├── .....
└── name152.png
└── high
├── name101.png
├── .....
└── name292.png
python main.py --data_train_low dataset_name --data_train_high dataset_name --data_test DRBN_valid \
--update_peritr 1000 --epochs 125 --batch_size 4 --patch_size 128 \
--lr 1e-4 --decay 25+50+75+100 --gamma 0.5 --rgb_range 1.0 --iterations 2 \
--model SelfEnNet --exp SelfEnNet --save_folder blank --level 0
python main.py --data_train_low dataset_name --data_train_high dataset_name --data_test DRBN_valid \
--update_peritr 1000 --epochs 125 --batch_size 4 --patch_size 128 \
--lr 1e-4 --decay 25+50+75+100 --gamma 0.5 --rgb_range 1.0 --iterations 2 \
--model SelfEnNet --exp SelfEnNet --save_folder blank --level 1 \
--pre_train --pretrained_model model_dir/SelfEnNet/SelfEnNet_best_Enhance_0.pth.tar
@ARTICLE{Kar_2024_Self,
author={Kar, Aupendu and Dhara, Sobhan Kanti and Sen, Debashis and Biswas, Prabir Kumar},
journal={IEEE Transactions on Instrumentation and Measurement},
title={Self-supervision via Controlled Transformation and Unpaired Self-conditioning for Low-light Image Enhancement},
year={2024},
volume={},
number={},
pages={},
doi={}}
Aupendu Kar: mailtoaupendu[at]gmail[dot]com