Thanks to visit codestin.com
Credit goes to github.com

Skip to content

bebatut/scprep

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

scprep

Latest PyPI version Travis CI Build Read the Docs Coverage Status Twitter

Tools for loading and preprocessing biological matrices in Python and MATLAB.

Python

Installation

Scprep is available on pip. Install by running the following in a terminal::

pip install --user scprep

Quick Start

You can use scprep with your single cell data as follows::

import scprep
# Load data
data_path = "~/mydata/my_10X_data"
data = scprep.io.load_10X(data_path)
# Remove empty columns and rows
data = scprep.filter.remove_empty_cells(data)
data = scprep.filter.remove_empty_genes(data)
# Filter by library size to remove background
scprep.plot.plot_library_size(data, cutoff=500)
data = scprep.filter.filter_library_size(data, cutoff=500)
# Filter by mitochondrial expression to remove dead cells
mt_genes = scprep.utils.get_gene_set(data, starts_with="MT")
scprep.plot.plot_gene_set_expression(data, mt_genes, percentile=90)
data = scprep.filter.filter_gene_set_expression(data, mt_genes, 
                                                percentile=90)
# Library size normalize
data = scprep.normalize.library_size_normalize(data)
# Square root transform
data = scprep.transform.sqrt(data)

Help

Read the docs at If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help

About

A collection of scripts and tools for loading, processing, and handling single cell data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 63.3%
  • MATLAB 36.4%
  • Makefile 0.3%