Thanks to visit codestin.com
Credit goes to github.com

Skip to content

caohy1988/python-machine-learning-book

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

270 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

python-machine-learning-book

Python Machine Learning code repository.

What you can expect are 400 pages rich in useful material just about everything you need to know to get started with machine learning ... from theory to the actual code that you can directly put into action! This is not yet just another "this is how scikit-learn works" book. I aim to explain all the underlying concepts, tell you everything you need to know in terms of best practices and caveats, and we will put those concepts into action mainly using NumPy, scikit-learn, and Theano.

You are not sure if this book is for you? Please checkout the excerpts from the Foreword and Preface, or take a look at the FAQ section for further information.


<<<<<<< HEAD

1st edition, published September 23rd 2015
Paperback: 454 pages
Publisher: Packt Publishing
Language: English
ISBN-10: 1783555130
ISBN-13: 978-1783555130
Kindle ASIN: B00YSILNL0
>>>>>>> rasbt/master

Sebastian Raschka’s new book, Python Machine Learning, has just been released. I got a chance to read a review copy and it’s just as I expected - really great! It’s well organized, super easy to follow, and it not only offers a good foundation for smart, non-experts, practitioners will get some ideas and learn new tricks here as well.
– Lon Riesberg at Data Elixir

<<<<<<< HEAD

Updates

  • There was a recent technical problem at Amazon.com that lead to the cancellation of the paperback pre-orders. Sorry for the inconvenience, just heard that the production department of the publisher is currently in discussion with Amazon to resolve the problem.
  • The final version is now on the publisher's servers; finally, I got the publication date: September 24th, 2015.

=======

Superb job! Thus far, for me it seems to have hit the right balance of theory and practice…math and code!
Brian Thomas

I've read (virtually) every Machine Learning title based around Scikit-learn and this is hands-down the best one out there.
Jason Wolosonovich

rasbt/master

Links

rasbt/master

<<<<<<< HEAD If you are interested in keeping in touch, I have quite a lively twitter stream (@rasbt) all about data science and machine learning. I also maintain a blog where I post all of the things I am particularly excited about.

Table of Contents

Excerpts from the Foreword and Preface.

  1. Machine Learning - Giving Computers the Ability to Learn from Data
  2. Training Machine Learning Algorithms for Classification
  3. A Tour of Machine Learning Classifiers Using Scikit-Learn
  4. Building Good Training Sets – Data Pre-Processing
  5. Compressing Data via Dimensionality Reduction
  6. Learning Best Practices for Model Evaluation and Hyperparameter Optimization
  7. Combining Different Models for Ensemble Learning
  8. Applying Machine Learning to Sentiment Analysis
  9. Embedding a Machine Learning Model into a Web Application
  10. Predicting Continuous Target Variables with Regression Analysis
  11. Working with Unlabeled Data – Clustering Analysis
  12. Training Artificial Neural Networks for Image Recognition
  13. Parallelizing Neural Network Training via Theano

=======

Table of Contents and Code Notebooks

Simply click on the ipynb/nbviewer links next to the chapter headlines to view the code examples (currently, the internal document links are only supported by the NbViewer version). Please note that these are just the code examples accompanying the book, which I uploaded for your convenience; be aware that these notebooks may not be useful without the formulae and descriptive text.

Excerpts from the Foreword and Preface

  1. Machine Learning - Giving Computers the Ability to Learn from Data [dir] [ipynb] [nbviewer]
  2. Training Machine Learning Algorithms for Classification [dir] [ipynb] [nbviewer]
  3. A Tour of Machine Learning Classifiers Using Scikit-Learn [dir] [ipynb] [nbviewer]
  4. Building Good Training Sets – Data Pre-Processing [dir] [ipynb] [nbviewer]
  5. Compressing Data via Dimensionality Reduction [dir] [ipynb] [nbviewer]
  6. Learning Best Practices for Model Evaluation and Hyperparameter Optimization [dir] [ipynb] [nbviewer]
  7. Combining Different Models for Ensemble Learning [dir] [ipynb] [nbviewer]
  8. Applying Machine Learning to Sentiment Analysis [dir] [ipynb] [nbviewer]
  9. Embedding a Machine Learning Model into a Web Application [dir] [ipynb] [nbviewer]
  10. Predicting Continuous Target Variables with Regression Analysis [dir] [ipynb] [nbviewer]
  11. Working with Unlabeled Data – Clustering Analysis [dir] [ipynb] [nbviewer]
  12. Training Artificial Neural Networks for Image Recognition [dir] [ipynb] [nbviewer]
  13. Parallelizing Neural Network Training via Theano [dir] [ipynb] [nbviewer]

Bonus Notebooks (not in the book)

rasbt/master

FAQ

<<<<<<< HEAD

General Questions

Questions about the Machine Learning Field

Questions about ML Concepts and Statistics

Cost Functions and Optimization
Regression Analysis
Tree models
Model evaluation
Logistic Regression
Neural Networks
Unsupervised Learning
Preprocessing
Naive Bayes
Other

Questions about the Book

rasbt/master

Contact

I am happy to answer questions! Just write me an email or consider asking the question on the Google Groups Email List.

If you are interested in keeping in touch, I have quite a lively twitter stream (@rasbt) all about data science and machine learning. I also maintain a blog where I post all of the things I am particularly excited about.

rasbt/master

About

Python Machine Learning code repository

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.9%
  • Other 0.1%