Thanks to visit codestin.com
Credit goes to github.com

Skip to content

SMILES GPT (SGPT) for chemical design through reinforcement leaerning

License

Notifications You must be signed in to change notification settings

charlesxu90/sgpt

Repository files navigation

Optimization of binding affinities in chemical space with transformer and deep reinforcement learning

This is the code of SGPT-RL, a tool for chemical design using transformer and deep reinforcement learning. Through employing GPT model as the policy network, SGPT-RL can learn scaffolds patterns in exploring the chemical space.

Workflow of SGPT-RL

Installation

Clone & create environment

git clone https://github.com/charlesxu90/sgpt.git
cd sgpt

conda env create -f environment.yml
conda activate sgpt-env

Download data and models using git-lfs

In the conda environment, git-lfs is installed. It can be used to download the raw data and pretrained models associated with this repository.

git lfs pull

Install Openbabel

sudo apt-get install -y openbabel

Need to remove the default openbabel in the conda environment if there's one.

Running the code

Commands to retrain the models & generate molecules:

# Train prior on Moses dataset
python train_prior.py --train_data data/moses/train.csv --valid_data data/moses/test.csv --n_epochs 10 --output_dir result/prior --eval --n_embd 256 --n_head 8 --n_layers 8 --batch_size 1024

# Train an agent to optimize DRD2 activity
python train_agent.py -p data/prior/gpt_model_10_0.126.pt -a data/prior/gpt_model_10_0.126.pt  -o result/drd2- -t drd2 --sigma 60

# Train an agent to optimize ACE2 docking score
python train_agent.py -p data/prior/gpt_model_10_0.126.pt -a data/prior/gpt_model_10_0.126.pt  -o result/ace2- -t ace2 --sigma 60  --n_steps 1000

# Generate molecules from pretrained models
python generate.py --model_path data/prior/gpt_model_10_0.126.pt --out_file result/prior/sgpt-10000.csv --num_to_sample 10000

License

This code is licensed under MIT License.

Citation

If you're using SGPT-RL in your research or applications, please cite using this BibTeX:

@article{xu2024optimization,
  title={Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning},
  author={Xu, Xiaopeng and Zhou, Juexiao and Zhu, Chen and Zhan, Qing and Li, Zhongxiao and Zhang, Ruochi and Wang, Yu and Liao, Xingyu and Gao, Xin},
  journal={F1000Research},
  volume={12},
  pages={757},
  year={2024},
  publisher={F1000 Research Limited London, UK}
}

About

SMILES GPT (SGPT) for chemical design through reinforcement leaerning

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published