Python analysis of Indian Premier League (IPL) cricket data featuring:
- Team performance metrics
- Player statistics
- Match outcome analysis
- Venue-based trends
ipl-analysis/
├── data/
│ ├── matches.csv
│ └── deliveries.csv
├── notebooks/
│ ├── match_analysis.ipynb
│ └── delivery_analysis.ipynb
└── README.md
# Clone repository
git clone https://github.com/yourusername/ipl-analysis.git
cd ipl-analysis
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/Mac
.\venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
# Calculate top performing teams
import pandas as pd
matches = pd.read_csv('data/matches.csv')
top_teams = matches['winner'].value_counts().head(5)
print(top_teams)
# Create new feature branch
git checkout -b feature/new-analysis
# Function documentation example
def calculate_strike_rate(runs, balls):
"""
Calculate batting strike rate
Args:
runs (int): Runs scored
balls (int): Balls faced
Returns:
float: Strike rate (runs per 100 balls)
"""
return (runs/balls)*100 if balls > 0 else 0
MIT License