Build real-time AI agents with Confluent Cloud Streaming Agents. This quickstart includes three hands-on labs:
| Lab | Description |
|---|---|
| Lab1 - Price Matching Orders With MCP Tool Calling | *NEW!* Now using new Agent Definition (CREATE AGENT) syntax. Price matching agent that scrapes competitor websites and adjusts prices in real-time![]() |
| Lab2 - Vector Search & RAG | Vector search pipeline template with retrieval augmented generation (RAG). Use the included Flink documentation chunks, or bring your own documents for intelligent document retrieval.![]() |
| Lab3 - Agentic Fleet Management Using Confluent Intelligence | End-to-end boat fleet management demo showing use of Agent Definition, MCP tool calling, vector search, and anomaly detection.![]() |
Required accounts & credentials:
- Lab1: Zapier remote MCP server (Setup guide)
- Lab2: MongoDB Atlas vector database (Setup guide)
- Lab3: Zapier (Setup guide) + MongoDB (Setup guide)
Required tools:
- AWS CLI or Azure CLI - must be logged in
- Confluent CLI - must be logged in
- Docker - for Lab1 & Lab3 data generation only
- Git
- Terraform
- uv
Installation commands (Mac/Windows/Linux)
**Mac:**brew install uv git python && brew tap hashicorp/tap && brew install hashicorp/tap/terraform && brew install --cask confluent-cli docker-desktop && brew install awscli # or azure-cliWindows:
winget install astral-sh.uv Git.Git Docker.DockerDesktop Hashicorp.Terraform ConfluentInc.Confluent-CLI Python.Python Amazon.AWSCLI # or Microsoft.AzureCLILinux:
curl -LsSf https://astral.sh/uv/install.sh | sh
# Install other tools via your package managerClone the repository and navigate to the Quickstart directory:
git clone https://github.com/confluentinc/quickstart-streaming-agents.git
cd quickstart-streaming-agentsOne command deployment:
uv run deployThat's it! The script will guide you through setup, automatically create API keys, and deploy your chosen lab(s).
Note
For instructor-led workshops, add the --workshop flag: uv run deploy --workshop.
quickstart-streaming-agents/
├── aws|azure/ # Choose a cloud
│ ├── core/ # Shared Confluent Cloud infra for all labs
│ ├── lab1-tool-calling/ # Lab-specific infra
│ ├── lab2-vector-search/ # Lab-specific infra
│ └── lab3-agentic-fleet-management/ # Lab-specific infra
├── deploy.py # 🚀 Start here
└── scripts/ # Python utilities
🔄 Alternative deployment methods
Traditional Python:
pip install -e . && python deploy.py🔧 Manual terraform deployment
- All tools installed and authenticated
- Confluent Cloud API keys (Cloud Resource Management keys with EnvironmentAdmin role)
cd aws/ # or azure/
cd core/
terraform init && terraform apply --auto-approve
cd ../lab1-tool-calling/ # or lab2-vector-search
terraform init && terraform apply --auto-approvecloud_provider = "aws" # or "azure"
cloud_region = "your-region" # must be a region supported by MongoDB free tier, otherwise Lab2 deployment will not succeed
confluent_cloud_api_key = "your-key"
confluent_cloud_api_secret = "your-secret"
zapier_sse_endpoint = "https://mcp.zapier.com/api/mcp/s/your-key/sse" # Lab1 & Lab3
mongodb_connection_string = "mongodb+srv://cluster0.abc.mongodb.net" # Lab2 & Lab3
mongodb_username = "your-db-user" # Lab2 & Lab3
mongodb_password = "your-db-pass" # Lab2 & Lab3cd aws/lab1-tool-calling && terraform destroy --auto-approve
cd ../core && terraform destroy --auto-approve# Automated
uv run destroyFor early access to exciting new Flink AI features, fill out this form and we'll add you to our early access previews.


