Thanks to visit codestin.com
Credit goes to github.com

Skip to content

genlayerlabs/genlayer-testing-suite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

59 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GenLayer Testing Suite

License: MIT Discord Twitter PyPI version Documentation Code style: black

About

The GenLayer Testing Suite is a powerful testing framework designed to streamline the development and validation of intelligent contracts within the GenLayer ecosystem. Built on top of pytest and genlayer-py, this suite provides developers with a comprehensive set of tools for deploying, interacting with, and testing intelligent contracts efficiently in a simulated GenLayer environment.

πŸš€ Quick Start

Installation

pip install genlayer-test

Basic Usage

from gltest import get_contract_factory, get_default_account, create_account
from gltest.assertions import tx_execution_succeeded

factory = get_contract_factory("MyContract")
# Deploy a contract with default account
contract = factory.deploy() # This will be deployed with the default account
assert contract.account == get_default_account()

# Deploy a contract with other account
other_account = create_account()
contract = factory.deploy(account=other_account)
assert contract.account == other_account

# Interact with the contract
result = contract.get_value().call()  # Read method
tx_receipt = contract.set_value(args=["new_value"]).transact()  # Write method

assert tx_execution_succeeded(tx_receipt)

πŸ“‹ Table of Contents

Prerequisites

Before installing GenLayer Testing Suite, ensure you have the following prerequisites installed:

  • Python (>=3.12)
  • GenLayer Studio (Docker deployment)
  • pip (Python package installer)

Installation and Usage

Installation Options

  1. Install from PyPI (recommended):
$ pip install genlayer-test
  1. Install from source:
$ git clone https://github.com/genlayerlabs/genlayer-testing-suite
$ cd genlayer-testing-suite
$ pip install -e .

Configuration

The GenLayer Testing Suite can be configured using an optional but recommended gltest.config.yaml file in your project root. While not required, this file helps manage network configurations, contract paths, and environment settings in a centralized way, making it easier to maintain different environments and share configurations across team members.

# gltest.config.yaml
networks:
  default: localnet  # Default network to use

  localnet:  # Local development network configuration (pre-configured)
    url: "http://127.0.0.1:4000/api"
    leader_only: false  # Set to true to run all contracts in leader-only mode by default

  studionet:  # Studio network configuration (pre-configured)
    # Pre-configured network - accounts are automatically generated
    # You can override any settings if needed

  testnet_asimov:  # Test network configuration (pre-configured)
    # Pre-configured network - requires accounts to be specified
    accounts:
      - "${ACCOUNT_PRIVATE_KEY_1}"
      - "${ACCOUNT_PRIVATE_KEY_2}"
      - "${ACCOUNT_PRIVATE_KEY_3}"
    from: "${ACCOUNT_PRIVATE_KEY_2}"  # Optional: specify default account

  custom_network:  # Custom network configuration
    id: 1234
    url: "http://custom.network:8545"
    chain_type: "localnet"  # Required for custom networks: localnet, studionet, or testnet_asimov
    accounts:
      - "${CUSTOM_ACCOUNT_1}"
      - "${CUSTOM_ACCOUNT_2}"
    from: "${CUSTOM_ACCOUNT_1}"  # Optional: specify default account

paths:
  contracts: "contracts"  # Path to your contracts directory
  artifacts: "artifacts" # Path to your artifacts directory

environment: .env  # Path to your environment file containing private keys and other secrets

Key configuration sections:

  1. Networks: Define different network environments
    • default: Specifies which network to use by default
    • Pre-configured Networks:
      • localnet: Local development network with auto-generated test accounts
      • studionet: GenLayer Studio network with auto-generated test accounts
      • testnet_asimov: Public testnet (requires account configuration)
    • Network configurations can include:
      • url: The RPC endpoint for the network (optional for pre-configured networks)
      • id: Chain ID (optional for pre-configured networks)
      • chain_type: Chain type - one of: localnet, studionet, or testnet_asimov (required for custom networks)
      • accounts: List of account private keys (using environment variables)
      • from: Specify which account to use as the default for transactions (optional, defaults to first account)
      • leader_only: Leader only mode
    • For custom networks (non-pre-configured), id, url, chain_type, and accounts are required fields

Note on Environment Variables: When using environment variables in your configuration (e.g., ${ACCOUNT_PRIVATE_KEY_1}), ensure they are properly set in your environment file. If an environment variable is not found, the system will raise a clear error message indicating which variable is missing.

Default Account Selection: The from field allows you to specify which account from the accounts list should be used as the default for deployments and transactions. If not specified, the first account in the list is used by default. This is useful when you want a specific account to be the primary account for your tests without having to specify it in every transaction.

Example:

testnet_asimov:
  accounts:
    - "${DEPLOYER_KEY}"      # accounts[0]
    - "${USER_KEY}"          # accounts[1] 
    - "${ADMIN_KEY}"         # accounts[2]
  from: "${ADMIN_KEY}"       # Use ADMIN_KEY as default instead of DEPLOYER_KEY

Chain vs Network:

  • Network: Defines the connection details (URL, accounts, etc.) for a specific environment
  • Chain: Defines the genlayer chain type and its associated behaviors (localnet, studionet, or testnet_asimov)
  • Pre-configured networks automatically have the correct chain type set
  • Custom networks must specify the chain type explicitly
  • The --chain-type CLI flag can override the chain type for any network, allowing you to test different chain behaviors with the same network configuration
  1. Paths: Define important directory paths

    • contracts: Location of your contract files
    • artifacts: Location of your artifacts files (analysis results will be stored here)
  2. Environment: Path to your .env file containing sensitive information like private keys

If you don't provide a config file, the suite will use default values. You can override these settings using command-line arguments. For example:

# Override the default network
gltest --network testnet_asimov

# Override the contracts directory
gltest --contracts-dir custom/contracts/path

Running Tests

  1. Run all tests:
$ gltest
  1. Run specific test file:
$ gltest tests/test_mycontract.py
  1. Run tests with specific markers:
$ gltest -m "integration"
  1. Run tests with verbose output:
$ gltest -v
  1. Run tests in specific contracts directories, by default <path_to_contracts> is set to contracts/
$ gltest --contracts-dir <path_to_contracts>
  1. Run tests on a specific network:
# Run tests on localnet (default)
$ gltest --network localnet

# Run tests on studionet
$ gltest --network studionet

# Run tests on testnet (requires account configuration)
$ gltest --network testnet_asimov

# Run tests on a custom network
$ gltest --network custom_network

The --network flag allows you to specify which network configuration to use from your gltest.config.yaml. If not specified, it will use the default network defined in your config file.

Pre-configured Networks:

  • localnet and studionet: Work out of the box with auto-generated test accounts
  • testnet_asimov: Requires account configuration in gltest.config.yaml

When using testnet_asimov without proper account configuration, you'll receive a clear error message directing you to configure accounts in your config file.

  1. Run tests with a custom RPC url
$ gltest --rpc-url <custom_rpc_url>
  1. Run tests with a default wait interval for waiting transaction receipts
$ gltest --default-wait-interval <default_wait_interval>
  1. Run tests with a default wait retries for waiting transaction receipts
$ gltest --default-wait-retries <default_wait_retries>
  1. Run tests with leader-only mode enabled
$ gltest --leader-only

The --leader-only flag configures all contract deployments and write operations to run only on the leader node. This is useful for:

  • Faster test execution by avoiding consensus
  • Testing specific leader-only scenarios
  • Development and debugging purposes
  • Reducing computational overhead in test environments

When this flag is enabled, all contracts deployed and all write transactions will automatically use leader-only mode, regardless of individual method parameters.

Note: Leader-only mode is only available for studio-based networks (localhost, 127.0.0.1, *.genlayer.com, *.genlayerlabs.com). When enabled on other networks, it will have no effect and a warning will be logged.

  1. Override the chain type
$ gltest --chain-type localnet
$ gltest --chain-type studionet
$ gltest --chain-type testnet_asimov

The --chain-type flag allows you to override the chain type configured for the network. This is useful when:

  • Testing different chain behaviors without changing network configuration
  • Switching between chain types for testing purposes
  • Using a custom network URL with a specific chain type

Available chain types:

  • localnet: Local development chain
  • studionet: Studio-based chain
  • testnet_asimov: Testnet Asimov chain

The chain type determines various behaviors including RPC endpoints, consensus mechanisms, and available features. When specified, this flag overrides the chain type configured in your network settings.

πŸš€ Key Features

  • Pytest Integration – Extends pytest to support intelligent contract testing, making it familiar and easy to adopt.
  • Account & Transaction Management – Create, fund, and track accounts and transactions within the GenLayer Simulator.
  • Contract Deployment & Interaction – Deploy contracts, call methods, and monitor events seamlessly.
  • CLI Compatibility – Run tests directly from the command line, ensuring smooth integration with the GenLayer CLI.
  • State Injection & Consensus Simulation – Modify contract states dynamically and simulate consensus scenarios for advanced testing.
  • Prompt Testing & Statistical Analysis – Evaluate and statistically test prompts for AI-driven contract execution.
  • Scalability to Security & Audit Tools – Designed to extend into security testing and smart contract auditing.
  • Custom Transaction Context – Set custom validators with specific LLM providers and models, and configure GenVM datetime for deterministic testing scenarios.

πŸ“š Examples

Project Structure

Before diving into the examples, let's understand the basic project structure:

genlayer-example/
β”œβ”€β”€ contracts/              # Contract definitions
β”‚   └── storage.py          # Example storage contract
β”œβ”€β”€ test/                   # Test files
β”‚   └── test_contract.py    # Contract test cases
└── gltest.config.yaml      # Configuration file

Storage Contract Example

Let's examine a simple Storage contract that demonstrates basic read and write operations:

# { "Depends": "py-genlayer:test" }

from genlayer import *


# contract class
class Storage(gl.Contract):
    # State variable to store data
    storage: str

    # Constructor - initializes the contract state
    def __init__(self, initial_storage: str):
        self.storage = initial_storage

    # Read method - marked with @gl.public.view decorator
    # Returns the current storage value
    @gl.public.view
    def get_storage(self) -> str:
        return self.storage

    # Write method - marked with @gl.public.write decorator
    # Updates the storage value
    @gl.public.write
    def update_storage(self, new_storage: str) -> None:
        self.storage = new_storage

Key features demonstrated in this contract:

  • State variable declaration
  • Constructor with initialization
  • Read-only method with @gl.public.view decorator
  • State-modifying method with @gl.public.write decorator
  • Type hints for better code clarity

Contract Deployment

The GenLayer Testing Suite provides two methods for deploying contracts:

  1. deploy() - Returns the deployed contract instance (recommended for most use cases)
  2. deploy_contract_tx() - Returns only the transaction receipt

Here's how to deploy the Storage contract:

from gltest import get_contract_factory, get_default_account
from gltest.assertions import tx_execution_succeeded
from gltest.utils import extract_contract_address

def test_deployment():
    # Get the contract factory for your contract
    # it will search in the contracts directory
    factory = get_contract_factory("Storage")
    
    # Method 1: Deploy the contract with constructor arguments (recommended)
    contract = factory.deploy(
        args=["initial_value"],  # Constructor arguments
        account=get_default_account(),  # Account to deploy from
        consensus_max_rotations=3,  # Optional: max consensus rotations
        transaction_context=None,  # Optional: custom transaction context
    )
    
    # Contract is now deployed and ready to use
    assert contract.address is not None
    
    # Method 2: Deploy and get only the receipt
    receipt = factory.deploy_contract_tx(
        args=["initial_value"],
        account=get_default_account(),
    )
    
    # Verify deployment succeeded
    assert tx_execution_succeeded(receipt)

    # Get the contract address
    contract_address = extract_contract_address(receipt)

Read Methods

Reading from the contract requires calling .call() on the method:

from gltest import get_contract_factory

def test_read_methods():

    # Get the contract factory and deploy the contract
    factory = get_contract_factory("Storage")
    contract = factory.deploy()

    # Call a read-only method
    result = contract.get_storage(args=[]).call(
        transaction_context=None,  # Optional: custom transaction context
    )
    
    # Assert the result matches the initial value
    assert result == "initial_value"

Write Methods

Writing to the contract requires calling .transact() on the method. Method arguments are passed to the write method, while transaction parameters are passed to .transact():

from gltest import get_contract_factory
from gltest.assertions import tx_execution_succeeded

def test_write_methods():
    # Get the contract factory and deploy the contract
    factory = get_contract_factory("Storage")
    contract = factory.deploy()
    
    # Call a write method with arguments
    tx_receipt = contract.update_storage(
        args=["new_value"],  # Method arguments
    ).transact(
        value=0,  # Optional: amount of native currency to send
        consensus_max_rotations=3,  # Optional: max consensus rotations
        wait_interval=1000,  # Optional: milliseconds between status checks
        wait_retries=10,  # Optional: max number of retries
        transaction_context=None,  # Optional: custom transaction context
    )
    
    # Verify the transaction was successful
    assert tx_execution_succeeded(tx_receipt)
    
    # Verify the value was updated
    assert contract.get_storage().call() == "new_value"

Assertions

The GenLayer Testing Suite provides powerful assertion functions to validate transaction results and their output:

Basic Transaction Assertions

from gltest.assertions import tx_execution_succeeded, tx_execution_failed

# Basic success/failure checks
assert tx_execution_succeeded(tx_receipt)
assert tx_execution_failed(tx_receipt)  # Opposite of tx_execution_succeeded

Advanced Output Matching

You can match specific patterns in the transaction's stdout and stderr output using regex patterns, similar to pytest's match parameter:

# Simple string matching
assert tx_execution_succeeded(tx_receipt, match_std_out="Process completed")
assert tx_execution_failed(tx_receipt, match_std_err="Warning: deprecated")

# Regex pattern matching
assert tx_execution_succeeded(tx_receipt, match_std_out=r".*code \d+")
assert tx_execution_failed(tx_receipt, match_std_err=r"Method.*failed")

Assertion Function Parameters

Both tx_execution_succeeded and tx_execution_failed accept the following parameters:

  • result: The transaction result object from contract method calls
  • match_std_out (optional): String or regex pattern to match in stdout
  • match_std_err (optional): String or regex pattern to match in stderr

Network Compatibility: The stdout/stderr matching feature (match_std_out and match_std_err parameters) is only available when running on studionet and localnet. These features are not supported on testnet.

For more example contracts, check out the contracts directory which contains various sample contracts demonstrating different features and use cases.

Test Fixtures

The GenLayer Testing Suite provides reusable pytest fixtures in gltest.fixtures to simplify common testing operations. These fixtures can be imported and used in your test files to avoid repetitive setup code.

Available Fixtures

The following fixtures are available in gltest.fixtures:

  • gl_client (session scope) - GenLayer client instance for network operations
  • default_account (session scope) - Default account for testing and deployments
  • accounts (session scope) - List of test accounts for multi-account scenarios
1. gl_client (session scope)

Provides a GenLayer PY client instance that's created once per test session. This is useful for operations that interact directly with the GenLayer network.

def test_client_operations(gl_client):
    # Use the client for network operations
    tx_hash = "0x1234..."
    transaction = gl_client.get_transaction(tx_hash)
2. default_account (session scope)

Provides the default account used to execute transactions when no account is specified.

def test_with_default_account(default_account):
    # Use the default account for deployments
    factory = get_contract_factory("MyContract")
    contract = factory.deploy(account=default_account)
3. accounts (session scope)

Provides a list of account objects loaded from the private keys defined in gltest.config.yaml for the current network, or pre-created test accounts if no config is present

def test_multiple_accounts(accounts):
    # Get multiple accounts for testing
    sender = accounts[0]
    receiver = accounts[1]
    
    # Test transfers or multi-party interactions
    contract.transfer(args=[receiver.address, 100], account=sender)

Using Fixtures in Your Tests

To use these fixtures, simply import them and include them as parameters in your test functions:

from gltest import get_contract_factory
from gltest.assertions import tx_execution_succeeded

def test_complete_workflow(gl_client, default_account, accounts):
    
    # Deploy contract with default account
    factory = get_contract_factory("MyContract")
    contract = factory.deploy(account=default_account)
    
    # Interact using other accounts
    other_account = accounts[1]
    tx_receipt = contract.some_method(args=["value"], account=other_account)
    
    assert tx_execution_succeeded(tx_receipt)

Fixtures help maintain clean, DRY test code by:

  • Eliminating repetitive setup code
  • Ensuring consistent test environments
  • Managing resource cleanup automatically
  • Providing appropriate scoping for performance

Statistical Analysis with .analyze()

The GenLayer Testing Suite provides a powerful .analyze() method for write operations that performs statistical analysis through multiple simulation runs. This is particularly useful for testing LLM-based contracts where outputs may vary:

from gltest import get_contract_factory

def test_analyze_method():
    factory = get_contract_factory("LlmContract")
    contract = factory.deploy()
    
    # Analyze a write method's behavior across multiple runs
    analysis = contract.process_with_llm(args=["input_data"]).analyze(
        provider="openai",           # LLM provider
        model="gpt-4o",             # Model to use
        runs=100,                   # Number of simulation runs (default: 100)
        config=None,                # Optional: provider-specific config
        plugin=None,                # Optional: plugin name
        plugin_config=None,         # Optional: plugin configuration
        genvm_datetime="2024-01-15T10:30:00Z",  # Optional: GenVM datetime in ISO format
    )
    
    # Access analysis results
    print(f"Method: {analysis.method}")
    print(f"Success rate: {analysis.success_rate:.2f}%")
    print(f"Reliability score: {analysis.reliability_score:.2f}%")
    print(f"Unique states: {analysis.unique_states}")
    print(f"Execution time: {analysis.execution_time:.1f}s")

    # The analysis returns a MethodStatsSummary object with:
    # - method: The contract method name
    # - args: Arguments passed to the method
    # - total_runs: Total number of simulation runs
    # - successful_runs: Number of successful executions
    # - failed_runs: Number of failed executions
    # - unique_states: Number of unique contract states observed
    # - reliability_score: Percentage of runs with the most common state
    # - execution_time: Total time for all simulations

The .analyze() method helps you:

  • Test non-deterministic contract methods
  • Measure consistency of LLM-based operations
  • Identify edge cases and failure patterns
  • Benchmark performance across multiple runs

Mock Web Responses

The Mock Web Response system allows you to simulate HTTP responses for web requests made by intelligent contracts using GenLayer's web methods (gl.nondet.web.get(), gl.nondet.web.post(), etc.). This feature enables deterministic testing of contracts that interact with external web services without making actual HTTP calls.

Basic Example

Here's a simple example of mocking a web API response:

from gltest import get_contract_factory, get_validator_factory
from gltest.types import MockedWebResponse
import json

def test_simple_web_mock():
    # Define mock web responses
    mock_web_response: MockedWebResponse = {
        "nondet_web_request": {
            "https://api.example.com/price": {
                "method": "GET",
                "status": 200,
                "body": json.dumps({"price": 100.50})
            }
        }
    }
    
    # Create validators with mock web responses
    validator_factory = get_validator_factory()
    validators = validator_factory.batch_create_mock_validators(
        count=5,
        mock_web_response=mock_web_response
    )
    
    # Use validators in transaction context
    transaction_context = {"validators": [v.to_dict() for v in validators]}
    
    # Deploy and test contract
    factory = get_contract_factory("PriceOracle")
    contract = factory.deploy(transaction_context=transaction_context)
    
    # Contract's web requests will receive the mocked response
    result = contract.update_price().transact(transaction_context=transaction_context)

Supported HTTP Methods

Mock web responses support all HTTP methods including GET, POST, PUT, DELETE, PATCH, etc.:

mock_web_response: MockedWebResponse = {
    "nondet_web_request": {
        # GET request
        "https://api.example.com/users/123": {
            "method": "GET",
            "status": 200,
            "body": '{"id": 123, "name": "Alice"}'
        },
        # POST request
        "https://api.example.com/users": {
            "method": "POST",
            "status": 201,
            "body": '{"id": 124, "name": "Bob", "created": true}'
        },
        # DELETE request
        "https://api.example.com/users/123": {
            "method": "DELETE",
            "status": 204,
            "body": ""
        },
        # PUT request
        "https://api.example.com/users/123": {
            "method": "PUT",
            "status": 200,
            "body": '{"id": 123, "name": "Alice Updated"}'
        },
        # Error response
        "https://api.example.com/error": {
            "method": "GET",
            "status": 500,
            "body": "Internal Server Error"
        }
    }
}

How It Works

When a contract calls any web method (gl.nondet.web.get(), gl.nondet.web.post(), etc.):

  1. The mock system checks if the URL exists in the mock configuration
  2. If found, it returns the mocked response with the specified status and body
  3. If not found, the actual web request would be made (or fail if network access is disabled)

Complete Example: Twitter/X Username Storage

Here's a real-world example showing how to mock Twitter/X API responses:

# test_x_username_storage.py
from gltest import get_contract_factory, get_validator_factory
from gltest.assertions import tx_execution_succeeded
from gltest.types import MockedWebResponse
import json
import urllib.parse

def test_x_username_storage():
    # Helper to build URL with query parameters
    def get_username_url(username: str) -> str:
        params = {"user.fields": "public_metrics,verified"}
        return f"https://domain.com/api/twitter/users/by/username/{username}?{urllib.parse.urlencode(params)}"
    
    # Define mock responses for different usernames
    mock_web_response: MockedWebResponse = {
        "nondet_web_request": {
            get_username_url("user_a"): {
                "method": "GET",
                "status": 200,
                "body": json.dumps({"username": "user_a", "verified": True})
            },
            get_username_url("user_b"): {
                "method": "GET",
                "status": 200,
                "body": json.dumps({"username": "user_b", "verified": False})
            }
        }
    }
    
    # Create validators with mock web responses
    validator_factory = get_validator_factory()
    validators = validator_factory.batch_create_mock_validators(
        count=5,
        mock_web_response=mock_web_response
    )
    transaction_context = {"validators": [v.to_dict() for v in validators]}
    
    # Deploy and test contract
    factory = get_contract_factory("XUsernameStorage")
    contract = factory.deploy(transaction_context=transaction_context)
    
    # Test updating username - will use mocked response
    tx_receipt = contract.update_username(args=["user_a"]).transact(
        transaction_context=transaction_context
    )
    assert tx_execution_succeeded(tx_receipt)
    
    # Verify the username was stored
    username = contract.get_username().call(transaction_context=transaction_context)
    assert username == "user_a"

Combining Mock LLM and Web Responses

You can combine both mock LLM responses and mock web responses in the same test:

def test_combined_mocks():
    # Define both mock types
    mock_llm_response = {
        "eq_principle_prompt_comparative": {
            "values match": True
        }
    }
    
    mock_web_response: MockedWebResponse = {
        "nondet_web_request": {
            "https://api.example.com/data": {
                "method": "GET",
                "status": 200,
                "body": '{"value": 42}'
            }
        }
    }
    
    # Create validators with both mock types
    validator_factory = get_validator_factory()
    validators = validator_factory.batch_create_mock_validators(
        count=5,
        mock_llm_response=mock_llm_response,
        mock_web_response=mock_web_response
    )
    
    # Use in your tests...

Best Practices

  1. URL Matching: URLs must match exactly, including query parameters
  2. Response Body: Always provide the body as a string (use json.dumps() for JSON data)
  3. Status Codes: Use realistic HTTP status codes (200, 404, 500, etc.)
  4. Method Matching: Specify the correct HTTP method that your contract uses
  5. Error Testing: Mock error responses to test error handling paths
  6. Deterministic Tests: Mock web responses ensure tests don't depend on external services

Notes

  • Mock web responses are only available when using mock validators
  • URL matching is exact - the full URL including query parameters must match
  • The method field should match the HTTP method used by the contract
  • Useful for testing contracts that interact with external APIs without network dependencies
  • All standard HTTP methods are supported (GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS)

Custom Transaction Context

The GenLayer Testing Suite allows you to customize the transaction execution environment by providing a transaction_context parameter with custom validators and GenVM datetime settings.

Using Transaction Context

Set custom validators and GenVM datetime for deterministic testing:

from gltest import get_contract_factory, get_validator_factory

def test_with_custom_transaction_context():
    factory = get_contract_factory("MyContract")
    validator_factory = get_validator_factory()
    
    # Create custom validators
    validators = validator_factory.batch_create_validators(
        count=3,
        stake=10,
        provider="openai",
        model="gpt-4o",
        config={"temperature": 0.7, "max_tokens": 1000},
        plugin="openai-compatible",
        plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
    )
    
    # Create transaction context with custom validators and datetime
    transaction_context = {
        "validators": [v.to_dict() for v in validators],
        "genvm_datetime": "2024-03-15T14:30:00Z"  # ISO format datetime
    }
    
    # Deploy with custom context
    contract = factory.deploy(
        args=["initial_value"],
        transaction_context=transaction_context
    )
    
    # Call methods with custom context
    result = contract.read_method().call(
        transaction_context=transaction_context
    )
    
    # Write operations with custom context
    tx_receipt = contract.write_method(args=["value"]).transact(
        transaction_context=transaction_context
    )

Mock LLM Responses

The Mock LLM system allows you to simulate Large Language Model responses in GenLayer tests. This is essential for creating deterministic tests by providing predefined responses instead of relying on actual LLM calls.

Basic Structure

The mock system consists of a response dictionary that maps GenLayer methods to their mocked responses:

from gltest.types import MockedLLMResponse

mock_response: MockedLLMResponse = {
    "nondet_exec_prompt": {},                               # Optional: mocks gl.nondet.exec_prompt
    "eq_principle_prompt_comparative": {},        # Optional: mocks gl.eq_principle.prompt_comparative
    "eq_principle_prompt_non_comparative": {}     # Optional: mocks gl.eq_principle.prompt_non_comparative
}

Method Mappings

Mock Key GenLayer Method
"nondet_exec_prompt" gl.nondet.exec_prompt
"eq_principle_prompt_comparative" gl.eq_principle.prompt_comparative
"eq_principle_prompt_non_comparative" gl.eq_principle.prompt_non_comparative

How It Works

The mock system works by pattern matching against the user message that gets built internally. When a GenLayer method is called:

  1. A user message is constructed internally (<user_message>)
  2. The mock system searches for strings within that message
  3. If a matching string is found in the mock dictionary, the associated response is returned
String Matching Rules

The system performs substring matching on the user message. The key in your mock dictionary must be contained within the actual user message.

Mock Validators with Transaction Context

Combine mock validators with custom datetime for fully deterministic tests:

from gltest.types import MockedLLMResponse

def test_with_mocked_context():
    factory = get_contract_factory("LLMContract")
    validator_factory = get_validator_factory()
    
    # Define mock LLM responses
    mock_response: MockedLLMResponse = {
        "nondet_exec_prompt": {
            "analyze this": "positive sentiment"
        },
        "eq_principle_prompt_comparative": {
            "values match": True
        }
    }
    
    # Create mock validators
    mock_validators = validator_factory.batch_create_mock_validators(
        count=5,
        mock_llm_response=mock_response
    )
    
    # Set up deterministic context
    transaction_context = {
        "validators": [v.to_dict() for v in mock_validators],
        "genvm_datetime": "2024-01-01T00:00:00Z"  # Fixed datetime for reproducibility
    }
    
    # Deploy and test with deterministic context
    contract = factory.deploy(transaction_context=transaction_context)
    
    # All operations will use the same mocked validators and datetime
    result = contract.analyze_text(args=["analyze this"]).transact(
        transaction_context=transaction_context
    )
    # Result will consistently return "positive sentiment"

Custom Validators

The GenLayer Testing Suite includes a get_validator_factory() function that allows you to create custom validators with specific configurations for testing different LLM providers and consensus scenarios.

Creating Custom Validators

from gltest import get_validator_factory

def test_with_custom_validators():
    factory = get_validator_factory()
    
    # Create validators with different LLM providers
    openai_validator = factory.create_validator(
        stake=10,
        provider="openai",
        model="gpt-4o",
        config={"temperature": 0.8, "max_tokens": 2000},
        plugin="openai-compatible",
        plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
    )
    
    ollama_validator = factory.create_validator(
        stake=8,
        provider="ollama",
        model="mistral",
        config={"temperature": 0.5},
        plugin="ollama",
        plugin_config={"api_url": "http://localhost:11434"}
    )
    
    # Use validators in your tests
    validators = [openai_validator, ollama_validator]
    # Configure your test environment with these validators

Batch Creation

Create multiple validators with the same configuration:

def test_batch_validators():
    factory = get_validator_factory()
    
    # Create 5 validators with identical configuration
    validators = factory.batch_create_validators(
        count=5,
        stake=8,
        provider="openai",
        model="gpt-4o",
        config={"temperature": 0.7, "max_tokens": 1000},
        plugin="openai-compatible",
        plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
    )

Mock Validators

For deterministic testing, create mock validators that return predefined responses:

def test_with_mock_validators():
    factory = get_validator_factory()
    
    # Define mock responses
    mock_response = {
        "nondet_exec_prompt": {
            "What is 2+2?": "4",
            "Explain quantum physics": "It's complicated"
        },
        "eq_principle_prompt_comparative": {
            "values must match": True
        },
        "eq_principle_prompt_non_comparative": {
            "Is this valid?": True
        }
    }
    
    # Create a single mock validator
    mock_validator = factory.create_mock_validator(mock_response)
    
    # Create multiple mock validators
    mock_validators = factory.batch_create_mock_validators(
        count=5,
        mock_llm_response=mock_response
    )

Validator Methods

Each validator object provides useful methods:

  • to_dict(): Convert validator to dictionary format for API calls
  • clone(): Create an identical copy of the validator
  • batch_clone(count): Create multiple identical copies

Example:

def test_validator_cloning():
    factory = get_validator_factory()
    
    # Create a base validator
    base_validator = factory.create_validator(
        stake=10,
        provider="openai",
        model="gpt-4o",
        config={"temperature": 0.7},
        plugin="openai-compatible",
        plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
    )
    
    # Clone it to create identical validators
    cloned = base_validator.clone()
    multiple_clones = base_validator.batch_clone(3)
    
    # Convert to dictionary for API usage
    validator_dict = base_validator.to_dict()

πŸ“ Best Practices

  1. Test Organization

    • Keep tests in a dedicated tests directory
    • Use descriptive test names
    • Group related tests using pytest markers
  2. Contract Deployment

    • Always verify deployment success
    • Use appropriate consensus parameters
    • Handle deployment errors gracefully
  3. Transaction Handling

    • Always wait for transaction finalization
    • Verify transaction status
    • Handle transaction failures appropriately
  4. State Management

    • Reset state between tests
    • Use fixtures for common setup
    • Avoid test dependencies

πŸ”§ Troubleshooting

Common Issues

  1. Deployment Failures

    • Problem: Contract deployment fails due to various reasons like insufficient funds, invalid contract code, or network issues.
    • Solution: Implement proper error handling
    try:
        contract = factory.deploy(args=["initial_value"])
    except DeploymentError as e:
        print(f"Deployment failed: {e}")
  2. Transaction Timeouts

    • Problem: Transactions take too long to complete or fail due to network congestion or consensus delays.
    • Solution: Adjust timeout parameters and implement retry logic:
    tx_receipt = contract.set_value(
        args=["new_value"],
    ).transact(
        wait_interval=2000,  # Increase wait interval between status checks
        wait_retries=20,  # Increase number of retry attempts
    )
  3. Consensus Issues

    • Problem: Transactions fail due to consensus-related problems like network partitions or slow consensus.
    • Solution: Adjust consensus parameters and try different modes:
    # Try with increased consensus parameters
    contract = factory.deploy(
        consensus_max_rotations=5,  # Increase number of consensus rotations
    )
    
    # For critical operations, use more conservative settings
    contract = factory.deploy(
        consensus_max_rotations=10,  # More rotations for better reliability
        wait_interval=3000,  # Longer wait between checks
        wait_retries=30  # More retries for consensus
    )
  4. Contracts Directory Issues

    • Problem: get_contract_factory can't find your contract files.
    • Solution: Ensure proper directory structure and configuration:
    # Default structure
    your_project/
    β”œβ”€β”€ contracts/           # Default contracts directory
    β”‚   └── my_contract.py   # Your contract file
    └── tests/
        └── test_contract.py # Your test file
    
    # If using a different directory structure
    gltest --contracts-dir /path/to/your/contracts
  5. Contract File Naming and Structure

    • Problem: Contracts aren't being recognized or loaded properly.
    • Solution: Follow the correct naming and structure conventions:
    # Correct file: contracts/my_contract.py
    
    # Correct structure:
    from genlayer import *
    
    class MyContract(gl.Contract):
        # Contract code here
        pass
    
    
    # Incorrect structure:
    class MyContract:  # Missing gl.Contract inheritance
        pass
  6. Environment Setup Issues

    • Problem: Tests fail due to missing or incorrect environment setup.
    • Solution: Verify your environment:
    # Check Python version
    python --version  # Should be >= 3.12
    
    # Check GenLayer Studio status
    docker ps  # Should show GenLayer Studio running
    
    # Verify package installation
    pip list | grep genlayer-test  # Should show installed version

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ’¬ Support