The GenLayer Testing Suite is a powerful testing framework designed to streamline the development and validation of intelligent contracts within the GenLayer ecosystem. Built on top of pytest and genlayer-py, this suite provides developers with a comprehensive set of tools for deploying, interacting with, and testing intelligent contracts efficiently in a simulated GenLayer environment.
pip install genlayer-testfrom gltest import get_contract_factory, get_default_account, create_account
from gltest.assertions import tx_execution_succeeded
factory = get_contract_factory("MyContract")
# Deploy a contract with default account
contract = factory.deploy() # This will be deployed with the default account
assert contract.account == get_default_account()
# Deploy a contract with other account
other_account = create_account()
contract = factory.deploy(account=other_account)
assert contract.account == other_account
# Interact with the contract
result = contract.get_value().call() # Read method
tx_receipt = contract.set_value(args=["new_value"]).transact() # Write method
assert tx_execution_succeeded(tx_receipt)- About
- Quick Start
- Prerequisites
- Installation and Usage
- Key Features
- Examples
- Best Practices
- Troubleshooting
- Contributing
- License
- Support
Before installing GenLayer Testing Suite, ensure you have the following prerequisites installed:
- Python (>=3.12)
- GenLayer Studio (Docker deployment)
- pip (Python package installer)
- Install from PyPI (recommended):
$ pip install genlayer-test- Install from source:
$ git clone https://github.com/genlayerlabs/genlayer-testing-suite
$ cd genlayer-testing-suite
$ pip install -e .The GenLayer Testing Suite can be configured using an optional but recommended gltest.config.yaml file in your project root. While not required, this file helps manage network configurations, contract paths, and environment settings in a centralized way, making it easier to maintain different environments and share configurations across team members.
# gltest.config.yaml
networks:
default: localnet # Default network to use
localnet: # Local development network configuration (pre-configured)
url: "http://127.0.0.1:4000/api"
leader_only: false # Set to true to run all contracts in leader-only mode by default
studionet: # Studio network configuration (pre-configured)
# Pre-configured network - accounts are automatically generated
# You can override any settings if needed
testnet_asimov: # Test network configuration (pre-configured)
# Pre-configured network - requires accounts to be specified
accounts:
- "${ACCOUNT_PRIVATE_KEY_1}"
- "${ACCOUNT_PRIVATE_KEY_2}"
- "${ACCOUNT_PRIVATE_KEY_3}"
from: "${ACCOUNT_PRIVATE_KEY_2}" # Optional: specify default account
custom_network: # Custom network configuration
id: 1234
url: "http://custom.network:8545"
chain_type: "localnet" # Required for custom networks: localnet, studionet, or testnet_asimov
accounts:
- "${CUSTOM_ACCOUNT_1}"
- "${CUSTOM_ACCOUNT_2}"
from: "${CUSTOM_ACCOUNT_1}" # Optional: specify default account
paths:
contracts: "contracts" # Path to your contracts directory
artifacts: "artifacts" # Path to your artifacts directory
environment: .env # Path to your environment file containing private keys and other secretsKey configuration sections:
- Networks: Define different network environments
default: Specifies which network to use by default- Pre-configured Networks:
localnet: Local development network with auto-generated test accountsstudionet: GenLayer Studio network with auto-generated test accountstestnet_asimov: Public testnet (requires account configuration)
- Network configurations can include:
url: The RPC endpoint for the network (optional for pre-configured networks)id: Chain ID (optional for pre-configured networks)chain_type: Chain type - one of:localnet,studionet, ortestnet_asimov(required for custom networks)accounts: List of account private keys (using environment variables)from: Specify which account to use as the default for transactions (optional, defaults to first account)leader_only: Leader only mode
- For custom networks (non-pre-configured),
id,url,chain_type, andaccountsare required fields
Note on Environment Variables: When using environment variables in your configuration (e.g., ${ACCOUNT_PRIVATE_KEY_1}), ensure they are properly set in your environment file. If an environment variable is not found, the system will raise a clear error message indicating which variable is missing.
Default Account Selection: The from field allows you to specify which account from the accounts list should be used as the default for deployments and transactions. If not specified, the first account in the list is used by default. This is useful when you want a specific account to be the primary account for your tests without having to specify it in every transaction.
Example:
testnet_asimov:
accounts:
- "${DEPLOYER_KEY}" # accounts[0]
- "${USER_KEY}" # accounts[1]
- "${ADMIN_KEY}" # accounts[2]
from: "${ADMIN_KEY}" # Use ADMIN_KEY as default instead of DEPLOYER_KEYChain vs Network:
- Network: Defines the connection details (URL, accounts, etc.) for a specific environment
- Chain: Defines the genlayer chain type and its associated behaviors (localnet, studionet, or testnet_asimov)
- Pre-configured networks automatically have the correct chain type set
- Custom networks must specify the chain type explicitly
- The
--chain-typeCLI flag can override the chain type for any network, allowing you to test different chain behaviors with the same network configuration
-
Paths: Define important directory paths
contracts: Location of your contract filesartifacts: Location of your artifacts files (analysis results will be stored here)
-
Environment: Path to your
.envfile containing sensitive information like private keys
If you don't provide a config file, the suite will use default values. You can override these settings using command-line arguments. For example:
# Override the default network
gltest --network testnet_asimov
# Override the contracts directory
gltest --contracts-dir custom/contracts/path- Run all tests:
$ gltest- Run specific test file:
$ gltest tests/test_mycontract.py- Run tests with specific markers:
$ gltest -m "integration"- Run tests with verbose output:
$ gltest -v- Run tests in specific contracts directories, by default
<path_to_contracts>is set tocontracts/
$ gltest --contracts-dir <path_to_contracts>- Run tests on a specific network:
# Run tests on localnet (default)
$ gltest --network localnet
# Run tests on studionet
$ gltest --network studionet
# Run tests on testnet (requires account configuration)
$ gltest --network testnet_asimov
# Run tests on a custom network
$ gltest --network custom_networkThe --network flag allows you to specify which network configuration to use from your gltest.config.yaml. If not specified, it will use the default network defined in your config file.
Pre-configured Networks:
localnetandstudionet: Work out of the box with auto-generated test accountstestnet_asimov: Requires account configuration ingltest.config.yaml
When using testnet_asimov without proper account configuration, you'll receive a clear error message directing you to configure accounts in your config file.
- Run tests with a custom RPC url
$ gltest --rpc-url <custom_rpc_url>- Run tests with a default wait interval for waiting transaction receipts
$ gltest --default-wait-interval <default_wait_interval>- Run tests with a default wait retries for waiting transaction receipts
$ gltest --default-wait-retries <default_wait_retries>- Run tests with leader-only mode enabled
$ gltest --leader-onlyThe --leader-only flag configures all contract deployments and write operations to run only on the leader node. This is useful for:
- Faster test execution by avoiding consensus
- Testing specific leader-only scenarios
- Development and debugging purposes
- Reducing computational overhead in test environments
When this flag is enabled, all contracts deployed and all write transactions will automatically use leader-only mode, regardless of individual method parameters.
Note: Leader-only mode is only available for studio-based networks (localhost, 127.0.0.1, *.genlayer.com, *.genlayerlabs.com). When enabled on other networks, it will have no effect and a warning will be logged.
- Override the chain type
$ gltest --chain-type localnet
$ gltest --chain-type studionet
$ gltest --chain-type testnet_asimovThe --chain-type flag allows you to override the chain type configured for the network. This is useful when:
- Testing different chain behaviors without changing network configuration
- Switching between chain types for testing purposes
- Using a custom network URL with a specific chain type
Available chain types:
localnet: Local development chainstudionet: Studio-based chaintestnet_asimov: Testnet Asimov chain
The chain type determines various behaviors including RPC endpoints, consensus mechanisms, and available features. When specified, this flag overrides the chain type configured in your network settings.
- Pytest Integration β Extends pytest to support intelligent contract testing, making it familiar and easy to adopt.
- Account & Transaction Management β Create, fund, and track accounts and transactions within the GenLayer Simulator.
- Contract Deployment & Interaction β Deploy contracts, call methods, and monitor events seamlessly.
- CLI Compatibility β Run tests directly from the command line, ensuring smooth integration with the GenLayer CLI.
- State Injection & Consensus Simulation β Modify contract states dynamically and simulate consensus scenarios for advanced testing.
- Prompt Testing & Statistical Analysis β Evaluate and statistically test prompts for AI-driven contract execution.
- Scalability to Security & Audit Tools β Designed to extend into security testing and smart contract auditing.
- Custom Transaction Context β Set custom validators with specific LLM providers and models, and configure GenVM datetime for deterministic testing scenarios.
Before diving into the examples, let's understand the basic project structure:
genlayer-example/
βββ contracts/ # Contract definitions
β βββ storage.py # Example storage contract
βββ test/ # Test files
β βββ test_contract.py # Contract test cases
βββ gltest.config.yaml # Configuration file
Let's examine a simple Storage contract that demonstrates basic read and write operations:
# { "Depends": "py-genlayer:test" }
from genlayer import *
# contract class
class Storage(gl.Contract):
# State variable to store data
storage: str
# Constructor - initializes the contract state
def __init__(self, initial_storage: str):
self.storage = initial_storage
# Read method - marked with @gl.public.view decorator
# Returns the current storage value
@gl.public.view
def get_storage(self) -> str:
return self.storage
# Write method - marked with @gl.public.write decorator
# Updates the storage value
@gl.public.write
def update_storage(self, new_storage: str) -> None:
self.storage = new_storageKey features demonstrated in this contract:
- State variable declaration
- Constructor with initialization
- Read-only method with
@gl.public.viewdecorator - State-modifying method with
@gl.public.writedecorator - Type hints for better code clarity
The GenLayer Testing Suite provides two methods for deploying contracts:
deploy()- Returns the deployed contract instance (recommended for most use cases)deploy_contract_tx()- Returns only the transaction receipt
Here's how to deploy the Storage contract:
from gltest import get_contract_factory, get_default_account
from gltest.assertions import tx_execution_succeeded
from gltest.utils import extract_contract_address
def test_deployment():
# Get the contract factory for your contract
# it will search in the contracts directory
factory = get_contract_factory("Storage")
# Method 1: Deploy the contract with constructor arguments (recommended)
contract = factory.deploy(
args=["initial_value"], # Constructor arguments
account=get_default_account(), # Account to deploy from
consensus_max_rotations=3, # Optional: max consensus rotations
transaction_context=None, # Optional: custom transaction context
)
# Contract is now deployed and ready to use
assert contract.address is not None
# Method 2: Deploy and get only the receipt
receipt = factory.deploy_contract_tx(
args=["initial_value"],
account=get_default_account(),
)
# Verify deployment succeeded
assert tx_execution_succeeded(receipt)
# Get the contract address
contract_address = extract_contract_address(receipt)Reading from the contract requires calling .call() on the method:
from gltest import get_contract_factory
def test_read_methods():
# Get the contract factory and deploy the contract
factory = get_contract_factory("Storage")
contract = factory.deploy()
# Call a read-only method
result = contract.get_storage(args=[]).call(
transaction_context=None, # Optional: custom transaction context
)
# Assert the result matches the initial value
assert result == "initial_value"Writing to the contract requires calling .transact() on the method. Method arguments are passed to the write method, while transaction parameters are passed to .transact():
from gltest import get_contract_factory
from gltest.assertions import tx_execution_succeeded
def test_write_methods():
# Get the contract factory and deploy the contract
factory = get_contract_factory("Storage")
contract = factory.deploy()
# Call a write method with arguments
tx_receipt = contract.update_storage(
args=["new_value"], # Method arguments
).transact(
value=0, # Optional: amount of native currency to send
consensus_max_rotations=3, # Optional: max consensus rotations
wait_interval=1000, # Optional: milliseconds between status checks
wait_retries=10, # Optional: max number of retries
transaction_context=None, # Optional: custom transaction context
)
# Verify the transaction was successful
assert tx_execution_succeeded(tx_receipt)
# Verify the value was updated
assert contract.get_storage().call() == "new_value"The GenLayer Testing Suite provides powerful assertion functions to validate transaction results and their output:
from gltest.assertions import tx_execution_succeeded, tx_execution_failed
# Basic success/failure checks
assert tx_execution_succeeded(tx_receipt)
assert tx_execution_failed(tx_receipt) # Opposite of tx_execution_succeededYou can match specific patterns in the transaction's stdout and stderr output using regex patterns, similar to pytest's match parameter:
# Simple string matching
assert tx_execution_succeeded(tx_receipt, match_std_out="Process completed")
assert tx_execution_failed(tx_receipt, match_std_err="Warning: deprecated")
# Regex pattern matching
assert tx_execution_succeeded(tx_receipt, match_std_out=r".*code \d+")
assert tx_execution_failed(tx_receipt, match_std_err=r"Method.*failed")Both tx_execution_succeeded and tx_execution_failed accept the following parameters:
result: The transaction result object from contract method callsmatch_std_out(optional): String or regex pattern to match in stdoutmatch_std_err(optional): String or regex pattern to match in stderr
Network Compatibility: The stdout/stderr matching feature (match_std_out and match_std_err parameters) is only available when running on studionet and localnet. These features are not supported on testnet.
For more example contracts, check out the contracts directory which contains various sample contracts demonstrating different features and use cases.
The GenLayer Testing Suite provides reusable pytest fixtures in gltest.fixtures to simplify common testing operations. These fixtures can be imported and used in your test files to avoid repetitive setup code.
The following fixtures are available in gltest.fixtures:
gl_client(session scope) - GenLayer client instance for network operationsdefault_account(session scope) - Default account for testing and deploymentsaccounts(session scope) - List of test accounts for multi-account scenarios
Provides a GenLayer PY client instance that's created once per test session. This is useful for operations that interact directly with the GenLayer network.
def test_client_operations(gl_client):
# Use the client for network operations
tx_hash = "0x1234..."
transaction = gl_client.get_transaction(tx_hash)Provides the default account used to execute transactions when no account is specified.
def test_with_default_account(default_account):
# Use the default account for deployments
factory = get_contract_factory("MyContract")
contract = factory.deploy(account=default_account)Provides a list of account objects loaded from the private keys defined in gltest.config.yaml for the current network, or pre-created test accounts if no config is present
def test_multiple_accounts(accounts):
# Get multiple accounts for testing
sender = accounts[0]
receiver = accounts[1]
# Test transfers or multi-party interactions
contract.transfer(args=[receiver.address, 100], account=sender)To use these fixtures, simply import them and include them as parameters in your test functions:
from gltest import get_contract_factory
from gltest.assertions import tx_execution_succeeded
def test_complete_workflow(gl_client, default_account, accounts):
# Deploy contract with default account
factory = get_contract_factory("MyContract")
contract = factory.deploy(account=default_account)
# Interact using other accounts
other_account = accounts[1]
tx_receipt = contract.some_method(args=["value"], account=other_account)
assert tx_execution_succeeded(tx_receipt)Fixtures help maintain clean, DRY test code by:
- Eliminating repetitive setup code
- Ensuring consistent test environments
- Managing resource cleanup automatically
- Providing appropriate scoping for performance
The GenLayer Testing Suite provides a powerful .analyze() method for write operations that performs statistical analysis through multiple simulation runs. This is particularly useful for testing LLM-based contracts where outputs may vary:
from gltest import get_contract_factory
def test_analyze_method():
factory = get_contract_factory("LlmContract")
contract = factory.deploy()
# Analyze a write method's behavior across multiple runs
analysis = contract.process_with_llm(args=["input_data"]).analyze(
provider="openai", # LLM provider
model="gpt-4o", # Model to use
runs=100, # Number of simulation runs (default: 100)
config=None, # Optional: provider-specific config
plugin=None, # Optional: plugin name
plugin_config=None, # Optional: plugin configuration
genvm_datetime="2024-01-15T10:30:00Z", # Optional: GenVM datetime in ISO format
)
# Access analysis results
print(f"Method: {analysis.method}")
print(f"Success rate: {analysis.success_rate:.2f}%")
print(f"Reliability score: {analysis.reliability_score:.2f}%")
print(f"Unique states: {analysis.unique_states}")
print(f"Execution time: {analysis.execution_time:.1f}s")
# The analysis returns a MethodStatsSummary object with:
# - method: The contract method name
# - args: Arguments passed to the method
# - total_runs: Total number of simulation runs
# - successful_runs: Number of successful executions
# - failed_runs: Number of failed executions
# - unique_states: Number of unique contract states observed
# - reliability_score: Percentage of runs with the most common state
# - execution_time: Total time for all simulationsThe .analyze() method helps you:
- Test non-deterministic contract methods
- Measure consistency of LLM-based operations
- Identify edge cases and failure patterns
- Benchmark performance across multiple runs
The Mock Web Response system allows you to simulate HTTP responses for web requests made by intelligent contracts using GenLayer's web methods (gl.nondet.web.get(), gl.nondet.web.post(), etc.). This feature enables deterministic testing of contracts that interact with external web services without making actual HTTP calls.
Here's a simple example of mocking a web API response:
from gltest import get_contract_factory, get_validator_factory
from gltest.types import MockedWebResponse
import json
def test_simple_web_mock():
# Define mock web responses
mock_web_response: MockedWebResponse = {
"nondet_web_request": {
"https://api.example.com/price": {
"method": "GET",
"status": 200,
"body": json.dumps({"price": 100.50})
}
}
}
# Create validators with mock web responses
validator_factory = get_validator_factory()
validators = validator_factory.batch_create_mock_validators(
count=5,
mock_web_response=mock_web_response
)
# Use validators in transaction context
transaction_context = {"validators": [v.to_dict() for v in validators]}
# Deploy and test contract
factory = get_contract_factory("PriceOracle")
contract = factory.deploy(transaction_context=transaction_context)
# Contract's web requests will receive the mocked response
result = contract.update_price().transact(transaction_context=transaction_context)Mock web responses support all HTTP methods including GET, POST, PUT, DELETE, PATCH, etc.:
mock_web_response: MockedWebResponse = {
"nondet_web_request": {
# GET request
"https://api.example.com/users/123": {
"method": "GET",
"status": 200,
"body": '{"id": 123, "name": "Alice"}'
},
# POST request
"https://api.example.com/users": {
"method": "POST",
"status": 201,
"body": '{"id": 124, "name": "Bob", "created": true}'
},
# DELETE request
"https://api.example.com/users/123": {
"method": "DELETE",
"status": 204,
"body": ""
},
# PUT request
"https://api.example.com/users/123": {
"method": "PUT",
"status": 200,
"body": '{"id": 123, "name": "Alice Updated"}'
},
# Error response
"https://api.example.com/error": {
"method": "GET",
"status": 500,
"body": "Internal Server Error"
}
}
}When a contract calls any web method (gl.nondet.web.get(), gl.nondet.web.post(), etc.):
- The mock system checks if the URL exists in the mock configuration
- If found, it returns the mocked response with the specified status and body
- If not found, the actual web request would be made (or fail if network access is disabled)
Here's a real-world example showing how to mock Twitter/X API responses:
# test_x_username_storage.py
from gltest import get_contract_factory, get_validator_factory
from gltest.assertions import tx_execution_succeeded
from gltest.types import MockedWebResponse
import json
import urllib.parse
def test_x_username_storage():
# Helper to build URL with query parameters
def get_username_url(username: str) -> str:
params = {"user.fields": "public_metrics,verified"}
return f"https://domain.com/api/twitter/users/by/username/{username}?{urllib.parse.urlencode(params)}"
# Define mock responses for different usernames
mock_web_response: MockedWebResponse = {
"nondet_web_request": {
get_username_url("user_a"): {
"method": "GET",
"status": 200,
"body": json.dumps({"username": "user_a", "verified": True})
},
get_username_url("user_b"): {
"method": "GET",
"status": 200,
"body": json.dumps({"username": "user_b", "verified": False})
}
}
}
# Create validators with mock web responses
validator_factory = get_validator_factory()
validators = validator_factory.batch_create_mock_validators(
count=5,
mock_web_response=mock_web_response
)
transaction_context = {"validators": [v.to_dict() for v in validators]}
# Deploy and test contract
factory = get_contract_factory("XUsernameStorage")
contract = factory.deploy(transaction_context=transaction_context)
# Test updating username - will use mocked response
tx_receipt = contract.update_username(args=["user_a"]).transact(
transaction_context=transaction_context
)
assert tx_execution_succeeded(tx_receipt)
# Verify the username was stored
username = contract.get_username().call(transaction_context=transaction_context)
assert username == "user_a"You can combine both mock LLM responses and mock web responses in the same test:
def test_combined_mocks():
# Define both mock types
mock_llm_response = {
"eq_principle_prompt_comparative": {
"values match": True
}
}
mock_web_response: MockedWebResponse = {
"nondet_web_request": {
"https://api.example.com/data": {
"method": "GET",
"status": 200,
"body": '{"value": 42}'
}
}
}
# Create validators with both mock types
validator_factory = get_validator_factory()
validators = validator_factory.batch_create_mock_validators(
count=5,
mock_llm_response=mock_llm_response,
mock_web_response=mock_web_response
)
# Use in your tests...- URL Matching: URLs must match exactly, including query parameters
- Response Body: Always provide the body as a string (use
json.dumps()for JSON data) - Status Codes: Use realistic HTTP status codes (200, 404, 500, etc.)
- Method Matching: Specify the correct HTTP method that your contract uses
- Error Testing: Mock error responses to test error handling paths
- Deterministic Tests: Mock web responses ensure tests don't depend on external services
- Mock web responses are only available when using mock validators
- URL matching is exact - the full URL including query parameters must match
- The method field should match the HTTP method used by the contract
- Useful for testing contracts that interact with external APIs without network dependencies
- All standard HTTP methods are supported (GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS)
The GenLayer Testing Suite allows you to customize the transaction execution environment by providing a transaction_context parameter with custom validators and GenVM datetime settings.
Set custom validators and GenVM datetime for deterministic testing:
from gltest import get_contract_factory, get_validator_factory
def test_with_custom_transaction_context():
factory = get_contract_factory("MyContract")
validator_factory = get_validator_factory()
# Create custom validators
validators = validator_factory.batch_create_validators(
count=3,
stake=10,
provider="openai",
model="gpt-4o",
config={"temperature": 0.7, "max_tokens": 1000},
plugin="openai-compatible",
plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
)
# Create transaction context with custom validators and datetime
transaction_context = {
"validators": [v.to_dict() for v in validators],
"genvm_datetime": "2024-03-15T14:30:00Z" # ISO format datetime
}
# Deploy with custom context
contract = factory.deploy(
args=["initial_value"],
transaction_context=transaction_context
)
# Call methods with custom context
result = contract.read_method().call(
transaction_context=transaction_context
)
# Write operations with custom context
tx_receipt = contract.write_method(args=["value"]).transact(
transaction_context=transaction_context
)The Mock LLM system allows you to simulate Large Language Model responses in GenLayer tests. This is essential for creating deterministic tests by providing predefined responses instead of relying on actual LLM calls.
The mock system consists of a response dictionary that maps GenLayer methods to their mocked responses:
from gltest.types import MockedLLMResponse
mock_response: MockedLLMResponse = {
"nondet_exec_prompt": {}, # Optional: mocks gl.nondet.exec_prompt
"eq_principle_prompt_comparative": {}, # Optional: mocks gl.eq_principle.prompt_comparative
"eq_principle_prompt_non_comparative": {} # Optional: mocks gl.eq_principle.prompt_non_comparative
}| Mock Key | GenLayer Method |
|---|---|
"nondet_exec_prompt" |
gl.nondet.exec_prompt |
"eq_principle_prompt_comparative" |
gl.eq_principle.prompt_comparative |
"eq_principle_prompt_non_comparative" |
gl.eq_principle.prompt_non_comparative |
The mock system works by pattern matching against the user message that gets built internally. When a GenLayer method is called:
- A user message is constructed internally (
<user_message>) - The mock system searches for strings within that message
- If a matching string is found in the mock dictionary, the associated response is returned
The system performs substring matching on the user message. The key in your mock dictionary must be contained within the actual user message.
Combine mock validators with custom datetime for fully deterministic tests:
from gltest.types import MockedLLMResponse
def test_with_mocked_context():
factory = get_contract_factory("LLMContract")
validator_factory = get_validator_factory()
# Define mock LLM responses
mock_response: MockedLLMResponse = {
"nondet_exec_prompt": {
"analyze this": "positive sentiment"
},
"eq_principle_prompt_comparative": {
"values match": True
}
}
# Create mock validators
mock_validators = validator_factory.batch_create_mock_validators(
count=5,
mock_llm_response=mock_response
)
# Set up deterministic context
transaction_context = {
"validators": [v.to_dict() for v in mock_validators],
"genvm_datetime": "2024-01-01T00:00:00Z" # Fixed datetime for reproducibility
}
# Deploy and test with deterministic context
contract = factory.deploy(transaction_context=transaction_context)
# All operations will use the same mocked validators and datetime
result = contract.analyze_text(args=["analyze this"]).transact(
transaction_context=transaction_context
)
# Result will consistently return "positive sentiment"The GenLayer Testing Suite includes a get_validator_factory() function that allows you to create custom validators with specific configurations for testing different LLM providers and consensus scenarios.
from gltest import get_validator_factory
def test_with_custom_validators():
factory = get_validator_factory()
# Create validators with different LLM providers
openai_validator = factory.create_validator(
stake=10,
provider="openai",
model="gpt-4o",
config={"temperature": 0.8, "max_tokens": 2000},
plugin="openai-compatible",
plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
)
ollama_validator = factory.create_validator(
stake=8,
provider="ollama",
model="mistral",
config={"temperature": 0.5},
plugin="ollama",
plugin_config={"api_url": "http://localhost:11434"}
)
# Use validators in your tests
validators = [openai_validator, ollama_validator]
# Configure your test environment with these validatorsCreate multiple validators with the same configuration:
def test_batch_validators():
factory = get_validator_factory()
# Create 5 validators with identical configuration
validators = factory.batch_create_validators(
count=5,
stake=8,
provider="openai",
model="gpt-4o",
config={"temperature": 0.7, "max_tokens": 1000},
plugin="openai-compatible",
plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
)For deterministic testing, create mock validators that return predefined responses:
def test_with_mock_validators():
factory = get_validator_factory()
# Define mock responses
mock_response = {
"nondet_exec_prompt": {
"What is 2+2?": "4",
"Explain quantum physics": "It's complicated"
},
"eq_principle_prompt_comparative": {
"values must match": True
},
"eq_principle_prompt_non_comparative": {
"Is this valid?": True
}
}
# Create a single mock validator
mock_validator = factory.create_mock_validator(mock_response)
# Create multiple mock validators
mock_validators = factory.batch_create_mock_validators(
count=5,
mock_llm_response=mock_response
)Each validator object provides useful methods:
to_dict(): Convert validator to dictionary format for API callsclone(): Create an identical copy of the validatorbatch_clone(count): Create multiple identical copies
Example:
def test_validator_cloning():
factory = get_validator_factory()
# Create a base validator
base_validator = factory.create_validator(
stake=10,
provider="openai",
model="gpt-4o",
config={"temperature": 0.7},
plugin="openai-compatible",
plugin_config={"api_key_env_var": "OPENAI_API_KEY"}
)
# Clone it to create identical validators
cloned = base_validator.clone()
multiple_clones = base_validator.batch_clone(3)
# Convert to dictionary for API usage
validator_dict = base_validator.to_dict()-
Test Organization
- Keep tests in a dedicated
testsdirectory - Use descriptive test names
- Group related tests using pytest markers
- Keep tests in a dedicated
-
Contract Deployment
- Always verify deployment success
- Use appropriate consensus parameters
- Handle deployment errors gracefully
-
Transaction Handling
- Always wait for transaction finalization
- Verify transaction status
- Handle transaction failures appropriately
-
State Management
- Reset state between tests
- Use fixtures for common setup
- Avoid test dependencies
-
Deployment Failures
- Problem: Contract deployment fails due to various reasons like insufficient funds, invalid contract code, or network issues.
- Solution: Implement proper error handling
try: contract = factory.deploy(args=["initial_value"]) except DeploymentError as e: print(f"Deployment failed: {e}")
-
Transaction Timeouts
- Problem: Transactions take too long to complete or fail due to network congestion or consensus delays.
- Solution: Adjust timeout parameters and implement retry logic:
tx_receipt = contract.set_value( args=["new_value"], ).transact( wait_interval=2000, # Increase wait interval between status checks wait_retries=20, # Increase number of retry attempts )
-
Consensus Issues
- Problem: Transactions fail due to consensus-related problems like network partitions or slow consensus.
- Solution: Adjust consensus parameters and try different modes:
# Try with increased consensus parameters contract = factory.deploy( consensus_max_rotations=5, # Increase number of consensus rotations ) # For critical operations, use more conservative settings contract = factory.deploy( consensus_max_rotations=10, # More rotations for better reliability wait_interval=3000, # Longer wait between checks wait_retries=30 # More retries for consensus )
-
Contracts Directory Issues
- Problem:
get_contract_factorycan't find your contract files. - Solution: Ensure proper directory structure and configuration:
# Default structure your_project/ βββ contracts/ # Default contracts directory β βββ my_contract.py # Your contract file βββ tests/ βββ test_contract.py # Your test file # If using a different directory structure gltest --contracts-dir /path/to/your/contracts
- Problem:
-
Contract File Naming and Structure
- Problem: Contracts aren't being recognized or loaded properly.
- Solution: Follow the correct naming and structure conventions:
# Correct file: contracts/my_contract.py # Correct structure: from genlayer import * class MyContract(gl.Contract): # Contract code here pass # Incorrect structure: class MyContract: # Missing gl.Contract inheritance pass
-
Environment Setup Issues
- Problem: Tests fail due to missing or incorrect environment setup.
- Solution: Verify your environment:
# Check Python version python --version # Should be >= 3.12 # Check GenLayer Studio status docker ps # Should show GenLayer Studio running # Verify package installation pip list | grep genlayer-test # Should show installed version
We welcome contributions! Please see our Contributing Guide for details.
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.