Thanks to visit codestin.com
Credit goes to github.com

Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions bigframes/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -2381,6 +2381,32 @@ def _split(
blocks = self._block._split(ns=ns, fracs=fracs, random_state=random_state)
return [DataFrame(block) for block in blocks]

@classmethod
def from_dict(
cls,
data: dict,
orient: str = "columns",
dtype=None,
columns=None,
) -> DataFrame:
return cls(pandas.DataFrame.from_dict(data, orient, dtype, columns)) # type: ignore

@classmethod
def from_records(
cls,
data,
index=None,
exclude=None,
columns=None,
coerce_float: bool = False,
nrows: int | None = None,
) -> DataFrame:
return cls(
pandas.DataFrame.from_records(
data, index, exclude, columns, coerce_float, nrows
)
)

def to_csv(
self, path_or_buf: str, sep=",", *, header: bool = True, index: bool = True
) -> None:
Expand Down
48 changes: 48 additions & 0 deletions tests/system/small/test_dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -3309,6 +3309,54 @@ def test_df_duplicated(scalars_df_index, scalars_pandas_df_index, keep, subset):
pd.testing.assert_series_equal(pd_series, bf_series, check_dtype=False)


def test_df_from_dict_columns_orient():
data = {"a": [1, 2], "b": [3.3, 2.4]}
bf_result = dataframe.DataFrame.from_dict(data, orient="columns").to_pandas()
pd_result = pd.DataFrame.from_dict(data, orient="columns")
assert_pandas_df_equal(
pd_result, bf_result, check_dtype=False, check_index_type=False
)


def test_df_from_dict_index_orient():
data = {"a": [1, 2], "b": [3.3, 2.4]}
bf_result = dataframe.DataFrame.from_dict(
data, orient="index", columns=["col1", "col2"]
).to_pandas()
pd_result = pd.DataFrame.from_dict(data, orient="index", columns=["col1", "col2"])
assert_pandas_df_equal(
pd_result, bf_result, check_dtype=False, check_index_type=False
)


def test_df_from_dict_tight_orient():
data = {
"index": [("i1", "i2"), ("i3", "i4")],
"columns": ["col1", "col2"],
"data": [[1, 2.6], [3, 4.5]],
"index_names": ["in1", "in2"],
"column_names": ["column_axis"],
}

bf_result = dataframe.DataFrame.from_dict(data, orient="tight").to_pandas()
pd_result = pd.DataFrame.from_dict(data, orient="tight")
assert_pandas_df_equal(
pd_result, bf_result, check_dtype=False, check_index_type=False
)


def test_df_from_records():
records = ((1, "a"), (2.5, "b"), (3.3, "c"), (4.9, "d"))

bf_result = dataframe.DataFrame.from_records(
records, columns=["c1", "c2"]
).to_pandas()
pd_result = pd.DataFrame.from_records(records, columns=["c1", "c2"])
assert_pandas_df_equal(
pd_result, bf_result, check_dtype=False, check_index_type=False
)


def test_df_to_dict(scalars_df_index, scalars_pandas_df_index):
unsupported = ["numeric_col"] # formatted differently
bf_result = scalars_df_index.drop(columns=unsupported).to_dict()
Expand Down
75 changes: 75 additions & 0 deletions third_party/bigframes_vendored/pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,6 +196,81 @@ def select_dtypes(self, include=None, exclude=None) -> DataFrame:

# ----------------------------------------------------------------------
# IO methods (to / from other formats)
@classmethod
def from_dict(
cls,
data: dict,
orient="columns",
dtype=None,
columns=None,
) -> DataFrame:
"""
Construct DataFrame from dict of array-like or dicts.

Creates DataFrame object from dictionary by columns or by index
allowing dtype specification.

Args:
data (dict):
Of the form {field : array-like} or {field : dict}.
orient ({'columns', 'index', 'tight'}, default 'columns'):
The "orientation" of the data. If the keys of the passed dict
should be the columns of the resulting DataFrame, pass 'columns'
(default). Otherwise if the keys should be rows, pass 'index'.
If 'tight', assume a dict with keys ['index', 'columns', 'data',
'index_names', 'column_names'].
dtype (dtype, default None):
Data type to force after DataFrame construction, otherwise infer.
columns (list, default None):
Column labels to use when ``orient='index'``. Raises a ValueError
if used with ``orient='columns'`` or ``orient='tight'``.

Returns:
DataFrame
"""
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)

@classmethod
def from_records(
cls,
data,
index=None,
exclude=None,
columns=None,
coerce_float: bool = False,
nrows: int | None = None,
) -> DataFrame:
"""
Convert structured or record ndarray to DataFrame.

Creates a DataFrame object from a structured ndarray, sequence of
tuples or dicts, or DataFrame.

Args:
data (structured ndarray, sequence of tuples or dicts):
Structured input data.
index (str, list of fields, array-like):
Field of array to use as the index, alternately a specific set of
input labels to use.
exclude (sequence, default None):
Columns or fields to exclude.
columns (sequence, default None):
Column names to use. If the passed data do not have names
associated with them, this argument provides names for the
columns. Otherwise this argument indicates the order of the columns
in the result (any names not found in the data will become all-NA
columns).
coerce_float (bool, default False):
Attempt to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point, useful for SQL result sets.
nrows (int, default None):
Number of rows to read if data is an iterator.

Returns:
DataFrame
"""
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)

def to_numpy(self, dtype=None, copy=False, na_value=None, **kwargs) -> np.ndarray:
"""
Convert the DataFrame to a NumPy array.
Expand Down