- 1-Neural Network & optimization
- 2-Structured Machine Learning
- 3-Convolutional Neural Network
- 3-ResNet vs Inception network
- 4-Recurrent Neural Networks
- 4-word2vec
- 4-seq2seq
- 1-First Look at NN
- 2.1-One-hot&word-embedding in keras
- 2.2-keras RNN
- 2.3-keras analyze Weather sequence data(dropout,fit_generator)
- 2.4-1d convnet for nlp
- 3-keras functional api
- 4-keras callback monitor & tensorboard visualization
- 5-RNN text generation
- 6-Sentiment Analysis in Shopping review(gensim word embedding&RNN)
-
HMM Model
-
LDA
-
3.1 聚类与检索
- 1-Conception
- 2-Content-based Recommendation
- 3-Collaborative Filtering
- 4.1-Matrix Factorization-explicit feedback(SVD&SVD++)
- 4.2-Matrix Factorization-implicit feedback(Bayes Personalization Rank)
- 5.1-Ranking-[GBDT+LR]
- 5.2-Ranking-[FM&FMM]
- 5.3-Ranking-[Wide&Deep Model]
- 6.1-MAB problem-[Thompson sampling&UCB&epsilon greed]
- 6.2-MAB problem-[LinUCB(contextual bandit)]
- [6.3-MAB problem-[cofiba(collaborative filtering)]]
- 7-Build scientific ranking list
- 8-drop duplicate in candidate pool