Thanks to visit codestin.com
Credit goes to github.com

Skip to content

[Clang] Reland: Diagnose invalid function types in dependent contexts #139246

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
May 9, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions clang/docs/ReleaseNotes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -680,6 +680,7 @@ Bug Fixes to C++ Support
- Improved parser recovery of invalid requirement expressions. In turn, this
fixes crashes from follow-on processing of the invalid requirement. (#GH138820)
- Fixed the handling of pack indexing types in the constraints of a member function redeclaration. (#GH138255)
- Fixed a crash when forming an invalid function type in a dependent context. (#GH138657) (#GH115725) (#GH68852)

Bug Fixes to AST Handling
^^^^^^^^^^^^^^^^^^^^^^^^^
Expand Down
25 changes: 25 additions & 0 deletions clang/lib/Sema/SemaExpr.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6550,6 +6550,23 @@ ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
return Call;
}

// Any type that could be used to form a callable expression
static bool MayBeFunctionType(const ASTContext &Context, const Expr *E) {
QualType T = E->getType();
if (T->isDependentType())
return true;

if (T == Context.BoundMemberTy || T == Context.UnknownAnyTy ||
T == Context.BuiltinFnTy || T == Context.OverloadTy ||
T->isFunctionType() || T->isFunctionReferenceType() ||
T->isMemberFunctionPointerType() || T->isFunctionPointerType() ||
T->isBlockPointerType() || T->isRecordType())
return true;

return isa<CallExpr, DeclRefExpr, MemberExpr, CXXPseudoDestructorExpr,
OverloadExpr, UnresolvedMemberExpr, UnaryOperator>(E);
}

ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig, bool IsExecConfig,
Expand Down Expand Up @@ -6603,6 +6620,14 @@ ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
*this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
Fn->getBeginLoc());

// If the type of the function itself is not dependent
// check that it is a reasonable as a function, as type deduction
// later assume the CallExpr has a sensible TYPE.
if (!MayBeFunctionType(Context, Fn))
return ExprError(
Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());

return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
VK_PRValue, RParenLoc, CurFPFeatureOverrides());
}
Expand Down
100 changes: 99 additions & 1 deletion clang/test/SemaTemplate/fun-template-def.cpp
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
// RUN: %clang_cc1 -fsyntax-only -verify %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++98 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++17 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++20 %s

// Tests that dependent expressions are always allowed, whereas non-dependent
// are checked as usual.
Expand Down Expand Up @@ -32,7 +34,7 @@ T f1(T t1, U u1, int i1, T** tpp)
i1 = t1[u1];
i1 *= t1;

i1(u1, t1); // error
i1(u1, t1);
u1(i1, t1);

U u2 = (T)i1;
Expand Down Expand Up @@ -60,3 +62,99 @@ void f3() {
f2<int*>(0);
f2<int>(0); // expected-error {{no matching function for call to 'f2'}}
}

#if __cplusplus >= 202002L
namespace GH138657 {
template <auto V> // #gh138657-template-head
class meta {};
template<int N>
class meta<N()> {}; // expected-error {{called object type 'int' is not a function or function point}}

template<int N[1]>
class meta<N()> {}; // expected-error {{called object type 'int *' is not a function or function point}}

template<char* N>
class meta<N()> {}; // expected-error {{called object type 'char *' is not a function or function point}}

struct S {};
template<S>
class meta<S()> {}; // expected-error {{template argument for non-type template parameter is treated as function type 'S ()'}}
// expected-note@#gh138657-template-head {{template parameter is declared here}}

}

namespace GH115725 {
template<auto ...> struct X {};
template<typename T, typename ...Ts> struct A {
template<Ts ...Ns, T *...Ps>
A(X<0(Ps)...>, Ts (*...qs)[Ns]);
// expected-error@-1{{called object type 'int' is not a function or function pointer}}

};
}

namespace GH68852 {
template <auto v>
struct constexpr_value {
template <class... Ts>
constexpr constexpr_value<v(Ts::value...)> call(Ts...) {
//expected-error@-1 {{called object type 'int' is not a function or function pointer}}
return {};
}
};

template <auto v> constexpr static inline auto c_ = constexpr_value<v>{};
// expected-note@-1 {{in instantiation of template}}
auto k = c_<1>; // expected-note {{in instantiation of variable}}

}

#endif
#if __cplusplus >= 201702L

namespace GH138731 {

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This regression test does not need to be limited to C++ >= 20. It uses variable templates so it should work with C++ >= 14 as well (provided that this definition of void_t works). A variation without variable templates would work with C++ >= 11. Not sure how important that all is.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is a bunch of C++17 features in there (inline variables) - it doesn't really matter here, but I did change the test to run in c++17 mode. Thanks

template <class...>
using void_t = void;

template <class T>
T&& declval();

struct S {
S();
static int f();
static int var;
};

namespace invoke_detail {

template <typename F>
struct traits {
template <typename... A>
using result = decltype(declval<F>()(declval<A>()...));
};

template <typename F, typename... A>
using invoke_result_t = typename traits<F>::template result<A...>;

template <typename Void, typename F, typename... A>
inline constexpr bool is_invocable_v = false;

template <typename F, typename... A>
inline constexpr bool
is_invocable_v<void_t<invoke_result_t<F, A...>>, F, A...> = true;

}

template <typename F, typename... A>
inline constexpr bool is_invocable_v =
invoke_detail::is_invocable_v<void, F, A...>;

static_assert(!is_invocable_v<int>);
static_assert(!is_invocable_v<int, int>);
static_assert(!is_invocable_v<S>);
static_assert(is_invocable_v<decltype(&S::f)>);
static_assert(!is_invocable_v<decltype(&S::var)>);

}

#endif
Loading