-
Notifications
You must be signed in to change notification settings - Fork 13.4k
[MLIR][Linalg][Python] Improve bindings for linalg.elementwise #139462
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir Author: Rolf Morel (rolfmorel) ChangesAdds wrappers for ElementWiseOp, in particular to ensure appropriate default indexing maps are derived. Full diff: https://github.com/llvm/llvm-project/pull/139462.diff 2 Files Affected:
diff --git a/mlir/python/mlir/dialects/linalg/__init__.py b/mlir/python/mlir/dialects/linalg/__init__.py
index 63586a5bb8bbb..6049e2ba923ba 100644
--- a/mlir/python/mlir/dialects/linalg/__init__.py
+++ b/mlir/python/mlir/dialects/linalg/__init__.py
@@ -216,6 +216,68 @@ def contract(
)
+# Extend and shadow the TableGen-derived version to make sure correct default
+# indexing_maps are derived (as there is no mechanism for doing so given the
+# Python API bypasses the C++-builders).
+class ElementWiseOp_(ElementwiseOp):
+ def __init__(
+ self,
+ result_tensors,
+ inputs,
+ outputs,
+ kind,
+ indexing_maps=None,
+ *,
+ loc=None,
+ ip=None,
+ ):
+ if indexing_maps is None:
+ inputs = [_get_op_result_or_value(in_) for in_ in inputs]
+ num_args = len(inputs)
+ for in0, in1 in zip(inputs[:-1], inputs[1:]):
+ assert in0.type == in1.type
+ if outputs:
+ outputs = [_get_op_result_or_value(out) for out in outputs]
+ num_args += 1
+ assert inputs[0].type == outputs[0].type
+ indexing_maps = [ir.AffineMap.get_identity(inputs[0].type.rank)] * num_args
+ super().__init__(
+ result_tensors=result_tensors,
+ inputs=inputs,
+ outputs=outputs,
+ kind=kind,
+ indexing_maps=indexing_maps,
+ loc=loc,
+ ip=ip,
+ )
+
+
+ElementwiseOp = ElementWiseOp_
+
+
+def elementwise(
+ *ins: Union[Operation, OpView, Value],
+ outs: Sequence[Union[Operation, OpView, Value]],
+ kind: Union[ElementwiseKind, Attribute],
+ indexing_maps: Optional[Sequence[AffineMapAttr]] = None,
+):
+ ins = [_get_op_result_or_value(input) for input in ins]
+ if len(outs) > 1:
+ raise ValueError(f"{outs=} must have length at most 1.")
+ init = _get_op_result_or_value(outs[0])
+ result_types = [init.type] if isinstance(init.type, RankedTensorType) else []
+
+ op = ElementwiseOp(
+ result_tensors=result_types,
+ inputs=ins,
+ outputs=[init],
+ kind=kind,
+ indexing_maps=indexing_maps,
+ )
+ fill_builtin_region(op.operation)
+ return _get_op_result_or_op_results(op)
+
+
def pack(
source,
dest,
diff --git a/mlir/test/python/dialects/linalg/ops.py b/mlir/test/python/dialects/linalg/ops.py
index e32a911b24b11..5a163474210a6 100644
--- a/mlir/test/python/dialects/linalg/ops.py
+++ b/mlir/test/python/dialects/linalg/ops.py
@@ -606,3 +606,189 @@ def tensor_pack(src, dst):
# CHECK: return %[[VAL_4]] : tensor<128x128xf32>
# CHECK: }
print(module)
+
+
+# CHECK-LABEL: TEST: testElementwiseOp
+@run
+def testElementwiseOp():
+ with Context(), Location.unknown():
+ module = Module.create()
+ f32 = F32Type.get()
+ with InsertionPoint(module.body):
+ rect_shape = (8, 16)
+ vert_line_shape = (8,)
+ hor_line_shape = (16,)
+ transposed_rect_shape = (16, 8)
+
+ # CHECK-DAG: #[[$IdentMap2D:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+ # CHECK-DAG: #[[$TransMap2D:.*]] = affine_map<(d0, d1) -> (d1, d0)>
+ # CHECK-DAG: #[[$VertLineBCastMap:.*]] = affine_map<(d0, d1) -> (d0)>
+ # CHECK-DAG: #[[$HorLineBCastMap:.*]] = affine_map<(d0, d1) -> (d1)>
+
+ ident_map_2d = AffineMap.get_identity(2)
+ transposed_map_2d = AffineMap.get_permutation((1, 0))
+ vert_line_bcast_map = AffineMap.get(2, 0, [AffineDimExpr.get(0)])
+ hor_line_bcast_map = AffineMap.get(2, 0, [AffineDimExpr.get(1)])
+
+ # CHECK: func.func @elementwise_op(
+ @func.FuncOp.from_py_func(
+ # CHECK-SAME: %[[Rect:.*]]: tensor<8x16xf32>,
+ RankedTensorType.get(rect_shape, f32),
+ # CHECK-SAME: %[[RectMem:.*]]: memref<8x16xf32>,
+ MemRefType.get(rect_shape, f32),
+ # CHECK-SAME: %[[VertLine:.*]]: tensor<8xf32>,
+ RankedTensorType.get(vert_line_shape, f32),
+ # CHECK-SAME: %[[VertLineMem:.*]]: memref<8xf32>,
+ MemRefType.get(vert_line_shape, f32),
+ # CHECK-SAME: %[[HorLine:.*]]: tensor<16xf32>,
+ RankedTensorType.get(hor_line_shape, f32),
+ # CHECK-SAME: %[[HorLineMem:.*]]: memref<16xf32>,
+ MemRefType.get(hor_line_shape, f32),
+ # CHECK-SAME: %[[TransRect:.*]]: tensor<16x8xf32>,
+ RankedTensorType.get(transposed_rect_shape, f32),
+ # CHECK-SAME: %[[TransRectMem:.*]]: memref<16x8xf32>)
+ MemRefType.get(transposed_rect_shape, f32),
+ )
+ def elementwise_op(
+ rect,
+ rect_mem,
+ vert_line,
+ vert_line_mem,
+ hor_line,
+ hor_line_mem,
+ trans_rect,
+ trans_rect_mem,
+ ):
+ # CHECK: %[[OutRect:.*]] = tensor.empty() : tensor<8x16xf32>
+ out_rect = tensor.EmptyOp(rect_shape, f32)
+ # CHECK: %[[OutRectMem:.*]] = memref.alloca() : memref<8x16xf32>
+ out_rect_mem = memref.alloca(MemRefType.get(rect_shape, f32), [], [])
+
+ if _inferred_affine_maps := True:
+ # CHECK: linalg.elementwise
+ # CHECK-SAME: kind=#linalg.elementwise_kind<exp>
+ # CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
+ # CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
+ op1 = linalg.ElementwiseOp(
+ result_tensors=(out_rect.result.type,),
+ inputs=(rect,),
+ outputs=(out_rect,),
+ kind=linalg.ElementwiseKind.exp,
+ )
+ linalg.fill_builtin_region(op1.operation)
+
+ # CHECK: linalg.elementwise
+ # CHECK-SAME: kind=#linalg.elementwise_kind<exp>
+ # CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
+ # CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
+ linalg.elementwise(
+ rect,
+ outs=(out_rect,),
+ kind=linalg.ElementwiseKind.exp,
+ )
+
+ # CHECK: linalg.elementwise
+ # CHECK-SAME: kind=#linalg.elementwise_kind<exp>
+ # CHECK-SAME: ins(%[[RectMem]] : memref<8x16xf32>)
+ # CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
+ linalg.elementwise(
+ rect_mem,
+ outs=(out_rect_mem,),
+ kind=linalg.ElementwiseKind.exp,
+ )
+
+ if _explicit_ident_affine_maps := True:
+ # Same as above but with default identity indexing_maps explicitly provided.
+ # CHECK: linalg.elementwise
+ # CHECK-SAME: kind=#linalg.elementwise_kind<exp>
+ # CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
+ # CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
+ op3 = linalg.ElementwiseOp(
+ result_tensors=(out_rect.result.type,),
+ inputs=(rect,),
+ outputs=(out_rect,),
+ kind=linalg.ElementwiseKind.exp,
+ indexing_maps=[ident_map_2d, ident_map_2d],
+ )
+ linalg.fill_builtin_region(op3.operation)
+
+ # CHECK: linalg.elementwise
+ # CHECK-SAME: kind=#linalg.elementwise_kind<exp>
+ # CHECK-SAME: ins(%[[RectMem]] : memref<8x16xf32>)
+ # CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
+ linalg.elementwise(
+ rect_mem,
+ outs=(out_rect_mem,),
+ kind=linalg.ElementwiseKind.exp,
+ indexing_maps=[ident_map_2d, ident_map_2d],
+ )
+
+ if _ops_with_non_ident_input_maps := True:
+ # CHECK: linalg.elementwise kind=#linalg.elementwise_kind<exp>
+ # CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$IdentMap2D]]]
+ # CHECK-SAME: ins(%[[VertLine]] : tensor<8xf32>)
+ # CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
+ op4 = linalg.ElementwiseOp(
+ result_tensors=(out_rect.result.type,),
+ inputs=(vert_line,),
+ outputs=(out_rect,),
+ kind=linalg.ElementwiseKind.exp,
+ indexing_maps=[vert_line_bcast_map, ident_map_2d],
+ )
+ linalg.fill_builtin_region(op4.operation)
+
+ # CHECK: linalg.elementwise kind=#linalg.elementwise_kind<add>
+ # CHECK-SAME: indexing_maps = [#[[$IdentMap2D]], #[[$VertLineBCastMap]], #[[$IdentMap2D]]]
+ # CHECK-SAME: ins(%[[Rect]], %[[VertLine]] : tensor<8x16xf32>, tensor<8xf32>)
+ # CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
+ op4 = linalg.ElementwiseOp(
+ result_tensors=(out_rect.result.type,),
+ inputs=(rect, vert_line),
+ outputs=(out_rect,),
+ kind=linalg.ElementwiseKind.add,
+ indexing_maps=[ident_map_2d, vert_line_bcast_map, ident_map_2d],
+ )
+ linalg.fill_builtin_region(op4.operation)
+
+ # CHECK: linalg.elementwise kind=#linalg.elementwise_kind<div>
+ # CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$HorLineBCastMap]], #[[$IdentMap2D]]]
+ # CHECK-SAME: ins(%[[VertLine]], %[[HorLine]] : tensor<8xf32>, tensor<16xf32>)
+ # CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
+ linalg.elementwise(
+ vert_line,
+ hor_line,
+ outs=(out_rect,),
+ kind=linalg.ElementwiseKind.div,
+ indexing_maps=[
+ vert_line_bcast_map,
+ hor_line_bcast_map,
+ ident_map_2d,
+ ],
+ )
+
+ if _ops_with_non_ident_and_transposed_input_maps := True:
+ # CHECK: %[[VertLineBoolsMem:.*]] = memref.alloca() : memref<8xi1>
+ vert_line_bools_mem = memref.alloca(
+ MemRefType.get(vert_line_shape, IntegerType.get_signless(1)),
+ [],
+ [],
+ )
+ # CHECK: linalg.elementwise kind=#linalg.elementwise_kind<select>
+ # CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$HorLineBCastMap]], #[[$TransMap2D]], #[[$IdentMap2D]]]
+ # CHECK-SAME: ins(%[[VertLineBoolsMem]], %[[HorLineMem]], %[[TransRectMem]] : memref<8xi1>, memref<16xf32>, memref<16x8xf32>)
+ # CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
+ linalg.elementwise(
+ vert_line_bools_mem,
+ hor_line_mem,
+ trans_rect_mem,
+ outs=(out_rect_mem,),
+ kind=linalg.ElementwiseKind.select,
+ indexing_maps=[
+ vert_line_bcast_map,
+ hor_line_bcast_map,
+ transposed_map_2d,
+ ident_map_2d,
+ ],
+ )
+
+ print(module)
|
Adds wrappers for ElementWiseOp, in particular to ensure appropriate default indexing maps are derived.
makslevental
approved these changes
May 12, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Adds wrappers for ElementWiseOp, in particular to ensure appropriate default indexing maps are derived.