Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Remove unused private _StringFuncParser. #10524

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 19, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
256 changes: 0 additions & 256 deletions lib/matplotlib/cbook/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2538,262 +2538,6 @@ def __exit__(self, exc_type, exc_value, traceback):
pass


class _FuncInfo(object):
"""
Class used to store a function.

"""

def __init__(self, function, inverse, bounded_0_1=True, check_params=None):
"""
Parameters
----------

function : callable
A callable implementing the function receiving the variable as
first argument and any additional parameters in a list as second
argument.
inverse : callable
A callable implementing the inverse function receiving the variable
as first argument and any additional parameters in a list as
second argument. It must satisfy 'inverse(function(x, p), p) == x'.
bounded_0_1: bool or callable
A boolean indicating whether the function is bounded in the [0,1]
interval, or a callable taking a list of values for the additional
parameters, and returning a boolean indicating whether the function
is bounded in the [0,1] interval for that combination of
parameters. Default True.
check_params: callable or None
A callable taking a list of values for the additional parameters
and returning a boolean indicating whether that combination of
parameters is valid. It is only required if the function has
additional parameters and some of them are restricted.
Default None.

"""

self.function = function
self.inverse = inverse

if callable(bounded_0_1):
self._bounded_0_1 = bounded_0_1
else:
self._bounded_0_1 = lambda x: bounded_0_1

if check_params is None:
self._check_params = lambda x: True
elif callable(check_params):
self._check_params = check_params
else:
raise ValueError("Invalid 'check_params' argument.")

def is_bounded_0_1(self, params=None):
"""
Returns a boolean indicating if the function is bounded in the [0,1]
interval for a particular set of additional parameters.

Parameters
----------

params : list
The list of additional parameters. Default None.

Returns
-------

out : bool
True if the function is bounded in the [0,1] interval for
parameters 'params'. Otherwise False.

"""

return self._bounded_0_1(params)

def check_params(self, params=None):
"""
Returns a boolean indicating if the set of additional parameters is
valid.

Parameters
----------

params : list
The list of additional parameters. Default None.

Returns
-------

out : bool
True if 'params' is a valid set of additional parameters for the
function. Otherwise False.

"""

return self._check_params(params)


class _StringFuncParser(object):
"""
A class used to convert predefined strings into
_FuncInfo objects, or to directly obtain _FuncInfo
properties.

"""

_funcs = {}
_funcs['linear'] = _FuncInfo(lambda x: x,
lambda x: x,
True)
_funcs['quadratic'] = _FuncInfo(np.square,
np.sqrt,
True)
_funcs['cubic'] = _FuncInfo(lambda x: x**3,
lambda x: x**(1. / 3),
True)
_funcs['sqrt'] = _FuncInfo(np.sqrt,
np.square,
True)
_funcs['cbrt'] = _FuncInfo(lambda x: x**(1. / 3),
lambda x: x**3,
True)
_funcs['log10'] = _FuncInfo(np.log10,
lambda x: (10**(x)),
False)
_funcs['log'] = _FuncInfo(np.log,
np.exp,
False)
_funcs['log2'] = _FuncInfo(np.log2,
lambda x: (2**x),
False)
_funcs['x**{p}'] = _FuncInfo(lambda x, p: x**p[0],
lambda x, p: x**(1. / p[0]),
True)
_funcs['root{p}(x)'] = _FuncInfo(lambda x, p: x**(1. / p[0]),
lambda x, p: x**p,
True)
_funcs['log{p}(x)'] = _FuncInfo(lambda x, p: (np.log(x) /
np.log(p[0])),
lambda x, p: p[0]**(x),
False,
lambda p: p[0] > 0)
_funcs['log10(x+{p})'] = _FuncInfo(lambda x, p: np.log10(x + p[0]),
lambda x, p: 10**x - p[0],
lambda p: p[0] > 0)
_funcs['log(x+{p})'] = _FuncInfo(lambda x, p: np.log(x + p[0]),
lambda x, p: np.exp(x) - p[0],
lambda p: p[0] > 0)
_funcs['log{p}(x+{p})'] = _FuncInfo(lambda x, p: (np.log(x + p[1]) /
np.log(p[0])),
lambda x, p: p[0]**(x) - p[1],
lambda p: p[1] > 0,
lambda p: p[0] > 0)

def __init__(self, str_func):
"""
Parameters
----------
str_func : string
String to be parsed.

"""

if not isinstance(str_func, six.string_types):
raise ValueError("'%s' must be a string." % str_func)
self._str_func = six.text_type(str_func)
self._key, self._params = self._get_key_params()
self._func = self._parse_func()

def _parse_func(self):
"""
Parses the parameters to build a new _FuncInfo object,
replacing the relevant parameters if necessary in the lambda
functions.

"""

func = self._funcs[self._key]

if not self._params:
func = _FuncInfo(func.function, func.inverse,
func.is_bounded_0_1())
else:
m = func.function
function = (lambda x, m=m: m(x, self._params))

m = func.inverse
inverse = (lambda x, m=m: m(x, self._params))

is_bounded_0_1 = func.is_bounded_0_1(self._params)

func = _FuncInfo(function, inverse,
is_bounded_0_1)
return func

@property
def func_info(self):
"""
Returns the _FuncInfo object.

"""
return self._func

@property
def function(self):
"""
Returns the callable for the direct function.

"""
return self._func.function

@property
def inverse(self):
"""
Returns the callable for the inverse function.

"""
return self._func.inverse

@property
def is_bounded_0_1(self):
"""
Returns a boolean indicating if the function is bounded
in the [0-1 interval].

"""
return self._func.is_bounded_0_1()

def _get_key_params(self):
str_func = self._str_func
# Checking if it comes with parameters
regex = r'\{(.*?)\}'
params = re.findall(regex, str_func)

for i, param in enumerate(params):
try:
params[i] = float(param)
except ValueError:
raise ValueError("Parameter %i is '%s', which is "
"not a number." %
(i, param))

str_func = re.sub(regex, '{p}', str_func)

try:
func = self._funcs[str_func]
except (ValueError, KeyError):
raise ValueError("'%s' is an invalid string. The only strings "
"recognized as functions are %s." %
(str_func, list(self._funcs)))

# Checking that the parameters are valid
if not func.check_params(params):
raise ValueError("%s are invalid values for the parameters "
"in %s." %
(params, str_func))

return str_func, params


def _topmost_artist(
artists,
_cached_max=functools.partial(max, key=operator.attrgetter("zorder"))):
Expand Down
61 changes: 0 additions & 61 deletions lib/matplotlib/tests/test_cbook.py
Original file line number Diff line number Diff line change
Expand Up @@ -503,64 +503,3 @@ def test_flatiter():

assert 0 == next(it)
assert 1 == next(it)


class TestFuncParser(object):
x_test = np.linspace(0.01, 0.5, 3)
validstrings = ['linear', 'quadratic', 'cubic', 'sqrt', 'cbrt',
'log', 'log10', 'log2', 'x**{1.5}', 'root{2.5}(x)',
'log{2}(x)',
'log(x+{0.5})', 'log10(x+{0.1})', 'log{2}(x+{0.1})',
'log{2}(x+{0})']
results = [(lambda x: x),
np.square,
(lambda x: x**3),
np.sqrt,
(lambda x: x**(1. / 3)),
np.log,
np.log10,
np.log2,
(lambda x: x**1.5),
(lambda x: x**(1 / 2.5)),
(lambda x: np.log2(x)),
(lambda x: np.log(x + 0.5)),
(lambda x: np.log10(x + 0.1)),
(lambda x: np.log2(x + 0.1)),
(lambda x: np.log2(x))]

bounded_list = [True, True, True, True, True,
False, False, False, True, True,
False,
True, True, True,
False]

@pytest.mark.parametrize("string, func",
zip(validstrings, results),
ids=validstrings)
def test_values(self, string, func):
func_parser = cbook._StringFuncParser(string)
f = func_parser.function
assert_array_almost_equal(f(self.x_test), func(self.x_test))

@pytest.mark.parametrize("string", validstrings, ids=validstrings)
def test_inverse(self, string):
func_parser = cbook._StringFuncParser(string)
f = func_parser.func_info
fdir = f.function
finv = f.inverse
assert_array_almost_equal(finv(fdir(self.x_test)), self.x_test)

@pytest.mark.parametrize("string", validstrings, ids=validstrings)
def test_get_inverse(self, string):
func_parser = cbook._StringFuncParser(string)
finv1 = func_parser.inverse
finv2 = func_parser.func_info.inverse
assert_array_almost_equal(finv1(self.x_test), finv2(self.x_test))

@pytest.mark.parametrize("string, bounded",
zip(validstrings, bounded_list),
ids=validstrings)
def test_bounded(self, string, bounded):
func_parser = cbook._StringFuncParser(string)
b = func_parser.is_bounded_0_1
assert_array_equal(b, bounded)