Thanks to visit codestin.com
Credit goes to github.com

Skip to content

DOC: update axes_demo to directly manipulate fig, ax #14934

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 1, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 26 additions & 19 deletions examples/subplots_axes_and_figures/axes_demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,14 @@
Axes Demo
=========

Example use of ``plt.axes`` to create inset axes within the main plot axes.
Example use of ``fig.add_axes`` to create inset axes within the main plot axes.

Please see also the :ref:`axes_grid_examples` section, and the following three
examples:

- :doc:`/gallery/subplots_axes_and_figures/zoom_inset_axes`
- :doc:`/gallery/axes_grid1/inset_locator_demo`
- :doc:`/gallery/axes_grid1/inset_locator_demo2`
"""
import matplotlib.pyplot as plt
import numpy as np
Expand All @@ -19,27 +26,27 @@
x = np.random.randn(len(t))
s = np.convolve(x, r)[:len(x)] * dt # colored noise

# the main axes is subplot(111) by default
plt.plot(t, s)
plt.xlim(0, 1)
plt.ylim(1.1 * np.min(s), 2 * np.max(s))
plt.xlabel('time (s)')
plt.ylabel('current (nA)')
plt.title('Gaussian colored noise')
fig, main_ax = plt.subplots()
main_ax.plot(t, s)
main_ax.set_xlim(0, 1)
main_ax.set_ylim(1.1 * np.min(s), 2 * np.max(s))
main_ax.set_xlabel('time (s)')
main_ax.set_ylabel('current (nA)')
main_ax.set_title('Gaussian colored noise')

# this is an inset axes over the main axes
a = plt.axes([.65, .6, .2, .2], facecolor='k')
n, bins, patches = plt.hist(s, 400, density=True)
plt.title('Probability')
plt.xticks([])
plt.yticks([])
right_inset_ax = fig.add_axes([.65, .6, .2, .2], facecolor='k')
right_inset_ax.hist(s, 400, density=True)
right_inset_ax.set_title('Probability')
right_inset_ax.set_xticks([])
right_inset_ax.set_yticks([])

# this is another inset axes over the main axes
a = plt.axes([0.2, 0.6, .2, .2], facecolor='k')
plt.plot(t[:len(r)], r)
plt.title('Impulse response')
plt.xlim(0, 0.2)
plt.xticks([])
plt.yticks([])
left_inset_ax = fig.add_axes([.2, .6, .2, .2], facecolor='k')
left_inset_ax.plot(t[:len(r)], r)
left_inset_ax.set_title('Impulse response')
left_inset_ax.set_xlim(0, 0.2)
left_inset_ax.set_xticks([])
left_inset_ax.set_yticks([])

plt.show()