Thanks to visit codestin.com
Credit goes to github.com

Skip to content

ENH: add shading='nearest' and 'auto' to pcolormesh #16258

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 9, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions doc/users/next_whats_new/2020-01-18-pcolorshadingoptions.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
Pcolor and Pcolormesh now accept shading='nearest' and 'auto'
-------------------------------------------------------------

Previously `.axes.Axes.pcolor` and `.axes.Axes.pcolormesh` handled
the situation where *x* and *y* have the same (respective) size as *C* by
dropping the last row and column of *C*, and *x* and *y* are regarded as the
edges of the remaining rows and columns in *C*. However, many users want
*x* and *y* centered on the rows and columns of *C*.

To accommodate this, ``shading='nearest'`` and ``shading='auto'`` are
new allowed strings for the ``shading`` kwarg. ``'nearest'`` will center the
color on *x* and *y* if *x* and *y* have the same dimensions as *C*
(otherwise an error will be thrown). ``shading='auto'`` will choose 'flat'
or 'nearest' based on the size of *X*, *Y*, *C*.

If ``shading='flat'`` then *X*, and *Y* should have dimensions one larger
than *C*. If *X* and *Y* have the same dimensions as *C*, then the previous
behavior is used and the last row and column of *C* are dropped, and a
DeprecationWarning is emitted.

Users can also specify this by the new :rc:`pcolor.shading` in their
``.matplotlibrc`` or via `.rcParams`.

See :doc:`pcolormesh </gallery/images_contours_and_fields/pcolormesh_grids>`
for examples.
132 changes: 132 additions & 0 deletions examples/images_contours_and_fields/pcolormesh_grids.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
"""
============================
pcolormesh grids and shading
============================

`.axes.Axes.pcolormesh` and `~.axes.Axes.pcolor` have a few options for
how grids are laid out and the shading between the grid points.

Generally, if *Z* has shape *(M, N)* then the grid *X* and *Y* can be
specified with either shape *(M+1, N+1)* or *(M, N)*, depending on the
argument for the ``shading`` keyword argument. Note that below we specify
vectors *x* as either length N or N+1 and *y* as length M or M+1, and
`~.axes.Axes.pcolormesh` internally makes the mesh matrices *X* and *Y* from
the input vectors.

"""

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

###############################################################################
# Flat Shading
# ------------
#
# The grid specification with the least assumptions is ``shading='flat'``
# and if the grid is one larger than the data in each dimesion, i.e. has shape
# *(M+1, N+1)*. In that case *X* and *Y* sepcify the corners of quadrilaterals
# that are colored with the values in *Z*. Here we specify the edges of the
# *(3, 5)* quadrilaterals with *X* and *Y* that are *(4, 6)*.

nrows = 3
ncols = 5
Z = np.arange(nrows * ncols).reshape(nrows, ncols)
x = np.arange(ncols + 1)
y = np.arange(nrows + 1)

fig, ax = plt.subplots()
ax.pcolormesh(x, y, Z, shading='flat', vmin=Z.min(), vmax=Z.max())


def _annotate(ax, x, y, title):
# this all gets repeated below:
X, Y = np.meshgrid(x, y)
ax.plot(X.flat, Y.flat, 'o', color='m')
ax.set_xlim(-0.7, 5.2)
ax.set_ylim(-0.7, 3.2)
ax.set_title(title)

_annotate(ax, x, y, "shading='flat'")


###############################################################################
# Flat Shading, same shape grid
# -----------------------------
#
# Often, however, data is provided where *X* and *Y* match the shape of *Z*.
# As of Matplotlib v3.3, ``shading='flat'`` is deprecated when this is the
# case, a warning is raised, and the last row and column of *Z* are dropped.
# This dropping of the last row and column is what Matplotlib did silently
# previous to v3.3, and is compatible with what Matlab does.

x = np.arange(ncols) # note *not* ncols + 1 as before
y = np.arange(nrows)
fig, ax = plt.subplots()
ax.pcolormesh(x, y, Z, shading='flat', vmin=Z.min(), vmax=Z.max())
_annotate(ax, x, y, "shading='flat': X, Y, C same shape")

###############################################################################
# Nearest Shading, same shape grid
# --------------------------------
#
# Usually, dropping a row and column of data is not what the user means when
# the make *X*, *Y* and *Z* all the same shape. For this case, Matplotlib
# allows ``shading='nearest'`` and centers the colored qudrilaterals on the
# grid points.
#
# If a grid that is not the correct shape is passed with ``shading='nearest'``
# an error is raised.

fig, ax = plt.subplots()
ax.pcolormesh(x, y, Z, shading='nearest', vmin=Z.min(), vmax=Z.max())
_annotate(ax, x, y, "shading='nearest'")

###############################################################################
# Auto Shading
# ------------
#
# Its possible that the user would like the code to automatically choose
# which to use, in which case ``shading='auto'`` will decide whether to
# use 'flat' or 'nearest' shading based on the shapes of *X*, *Y* and *Z*.

fig, axs = plt.subplots(2, 1, constrained_layout=True)
ax = axs[0]
x = np.arange(ncols)
y = np.arange(nrows)
ax.pcolormesh(x, y, Z, shading='auto', vmin=Z.min(), vmax=Z.max())
_annotate(ax, x, y, "shading='auto'; X, Y, Z: same shape (nearest)")

ax = axs[1]
x = np.arange(ncols + 1)
y = np.arange(nrows + 1)
ax.pcolormesh(x, y, Z, shading='auto', vmin=Z.min(), vmax=Z.max())
_annotate(ax, x, y, "shading='auto'; X, Y one larger than Z (flat)")

###############################################################################
# Gouraud Shading
# ---------------
#
# `Gouraud shading <https://en.wikipedia.org/wiki/Gouraud_shading>`_ can also
# be specified, where the colour in the quadrilaterals is linearly
# interpolated between the grid points. The shapes of *X*, *Y*, *Z* must
# be the same.

fig, ax = plt.subplots(constrained_layout=True)
x = np.arange(ncols)
y = np.arange(nrows)
ax.pcolormesh(x, y, Z, shading='gouraud', vmin=Z.min(), vmax=Z.max())
_annotate(ax, x, y, "shading='gouraud'; X, Y same shape as Z")

plt.show()
#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions and methods is shown in this example:

matplotlib.axes.Axes.pcolormesh
matplotlib.pyplot.pcolormesh
67 changes: 64 additions & 3 deletions examples/images_contours_and_fields/pcolormesh_levels.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@
pcolormesh
==========

Shows how to combine Normalization and Colormap instances to draw "levels" in
`~.axes.Axes.pcolor`, `~.axes.Axes.pcolormesh` and `~.axes.Axes.imshow` type
plots in a similar way to the levels keyword argument to contour/contourf.
`.axes.Axes.pcolormesh` allows you to generate 2-D image-style plots. Note it
is faster than the similar `~.axes.Axes.pcolor`.

"""

import matplotlib
Expand All @@ -14,6 +14,67 @@
from matplotlib.ticker import MaxNLocator
import numpy as np

###############################################################################
# Basic pcolormesh
# ----------------
#
# We usually specify a pcolormesh by defining the edge of quadrilaterals and
# the value of the quadrilateral. Note that here *x* and *y* each have one
# extra element than Z in the respective dimension.

np.random.seed(19680801)
Z = np.random.rand(6, 10)
x = np.arange(-0.5, 10, 1) # len = 11
y = np.arange(4.5, 11, 1) # len = 7

fig, ax = plt.subplots()
ax.pcolormesh(x, y, Z)

###############################################################################
# Non-rectilinear pcolormesh
# --------------------------
#
# Note that we can also specify matrices for *X* and *Y* and have
# non-rectilinear quadrilaterals.

x = np.arange(-0.5, 10, 1) # len = 11
y = np.arange(4.5, 11, 1) # len = 7
X, Y = np.meshgrid(x, y)
X = X + 0.2 * Y # tilt the coordinates.
Y = Y + 0.3 * X

fig, ax = plt.subplots()
ax.pcolormesh(X, Y, Z)

###############################################################################
# Centered Coordinates
# ---------------------
#
# Often a user wants to pass *X* and *Y* with the same sizes as *Z* to
# `.axes.Axes.pcolormesh`. This is also allowed if ``shading='auto'`` is
# passed (default set by :rc:`pcolor.shading`). Pre Matplotlib 3.3,
# ``shading='flat'`` would drop the last column and row of *Z*; while that
# is still allowed for back compatibility purposes, a DeprecationWarning is
# raised.

x = np.arange(10) # len = 10
y = np.arange(6) # len = 6
X, Y = np.meshgrid(x, y)

fig, axs = plt.subplots(2, 1, sharex=True, sharey=True)
axs[0].pcolormesh(X, Y, Z, vmin=np.min(Z), vmax=np.max(Z), shading='auto')
axs[0].set_title("shading='auto' = 'nearest'")
axs[1].pcolormesh(X, Y, Z, vmin=np.min(Z), vmax=np.max(Z), shading='flat')
axs[1].set_title("shading='flat'")

###############################################################################
# Making levels using Norms
# -------------------------
#
# Shows how to combine Normalization and Colormap instances to draw
# "levels" in `.axes.Axes.pcolor`, `.axes.Axes.pcolormesh`
# and `.axes.Axes.imshow` type plots in a similar
# way to the levels keyword argument to contour/contourf.

# make these smaller to increase the resolution
dx, dy = 0.05, 0.05
Expand Down
Loading