Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Fix radar chart example #637

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
280 changes: 166 additions & 114 deletions examples/api/radar_chart.py
Original file line number Diff line number Diff line change
@@ -1,77 +1,124 @@
"""
Example of creating a radar chart (a.k.a. a spider or star chart) [1]_.

Although this example allows a frame of either 'circle' or 'polygon', polygon
frames don't have proper gridlines (the lines are circles instead of polygons).
It's possible to get a polygon grid by setting GRIDLINE_INTERPOLATION_STEPS in
matplotlib.axis to the desired number of vertices, but the orientation of the
polygon is not aligned with the radial axes.

.. [1] http://en.wikipedia.org/wiki/Radar_chart
"""
import numpy as np

import matplotlib.pyplot as plt
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection

def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with `num_vars` axes."""
# calculate evenly-spaced axis angles
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
# rotate theta such that the first axis is at the top
theta += np.pi/2

def draw_poly_frame(self, x0, y0, r):
# TODO: use transforms to convert (x, y) to (r, theta)
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return plt.Polygon(verts, closed=True, edgecolor='k')

def draw_circle_frame(self, x0, y0, r):
return plt.Circle((x0, y0), r)

frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
if frame not in frame_dict:
raise ValueError, 'unknown value for `frame`: %s' % frame

class RadarAxes(PolarAxes):
"""Class for creating a radar chart (a.k.a. a spider or star chart)

http://en.wikipedia.org/wiki/Radar_chart
"""
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
# define draw_frame method
draw_frame = frame_dict[frame]

def fill(self, *args, **kwargs):
"""Override fill so that line is closed by default"""
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)

def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super(RadarAxes, self).plot(*args, **kwargs)
for line in lines:
self._close_line(line)

def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)

def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels)

def _gen_axes_patch(self):
x0, y0 = (0.5, 0.5)
r = 0.5
return self.draw_frame(x0, y0, r)

register_projection(RadarAxes)
return theta


if __name__ == '__main__':
#The following data is from the Denver Aerosol Sources and Health study.
#See doi:10.1016/j.atmosenv.2008.12.017
from matplotlib.path import Path
from matplotlib.spines import Spine
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection


def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with `num_vars` axes.

This function creates a RadarAxes projection and registers it.

Parameters
----------
num_vars : int
Number of variables for radar chart.
frame : {'circle' | 'polygon'}
Shape of frame surrounding axes.

"""
# calculate evenly-spaced axis angles
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
# rotate theta such that the first axis is at the top
theta += np.pi/2

def draw_poly_patch(self):
verts = unit_poly_verts(theta)
return plt.Polygon(verts, closed=True, edgecolor='k')

def draw_circle_patch(self):
# unit circle centered on (0.5, 0.5)
return plt.Circle((0.5, 0.5), 0.5)

patch_dict = {'polygon': draw_poly_patch, 'circle': draw_circle_patch}
if frame not in patch_dict:
raise ValueError, 'unknown value for `frame`: %s' % frame

class RadarAxes(PolarAxes):

name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
# define draw_frame method
draw_patch = patch_dict[frame]

def fill(self, *args, **kwargs):
"""Override fill so that line is closed by default"""
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)

def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super(RadarAxes, self).plot(*args, **kwargs)
for line in lines:
self._close_line(line)

def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)

def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels)

def _gen_axes_patch(self):
return self.draw_patch()

def _gen_axes_spines(self):
if frame == 'circle':
return PolarAxes._gen_axes_spines(self)
# The following is a hack to get the spines (i.e. the axes frame)
# to draw correctly for a polygon frame.

# spine_type must be 'left', 'right', 'top', 'bottom', or `circle`.
spine_type = 'circle'
verts = unit_poly_verts(theta)
# close off polygon by repeating first vertex
verts.append(verts[0])
path = Path(verts)

spine = Spine(self, spine_type, path)
spine.set_transform(self.transAxes)
return {'polar': spine}

register_projection(RadarAxes)
return theta


def unit_poly_verts(theta):
"""Return vertices of polygon for subplot axes.

This polygon is circumscribed by a unit circle centered at (0.5, 0.5)
"""
x0, y0, r = [0.5] * 3
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return verts


def example_data():
#The following data is from the Denver Aerosol Sources and Health study.
#See doi:10.1016/j.atmosenv.2008.12.017
#
#The data are pollution source profile estimates for five modeled pollution
#sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical species.
#The radar charts are experimented with here to see if we can nicely
#The radar charts are experimented with here to see if we can nicely
#visualize how the modeled source profiles change across four scenarios:
# 1) No gas-phase species present, just seven particulate counts on
# Sulfate
Expand All @@ -81,64 +128,69 @@ def _gen_axes_patch(self):
# Organic Carbon fraction 2 (OC2)
# Organic Carbon fraction 3 (OC3)
# Pyrolized Organic Carbon (OP)
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
# 3)Inclusion of gas-phase specie ozone (O3).
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
# 3)Inclusion of gas-phase specie ozone (O3).
# 4)Inclusion of both gas-phase speciesis present...
data = {
'column names':
['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
'Basecase':
[[0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
[0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
[0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
[0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
[0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]],
'With CO':
[[0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
[0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
[0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
[0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
[0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]],
'With O3':
[[0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
[0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
[0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
[0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
[0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]],
'CO & O3':
[[0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
[0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
[0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
[0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
[0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]]
}
return data


if __name__ == '__main__':
N = 9
theta = radar_factory(N)
spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO',
'O3']
f1_base = [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00]
f1_CO = [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00]
f1_O3 = [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03]
f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01]

f2_base = [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00]
f2_CO = [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00]
f2_O3 = [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00]
f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00]

f3_base = [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00]
f3_CO = [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00]
f3_O3 = [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00]
f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00]

f4_base = [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00]
f4_CO = [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00]
f4_O3 = [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95]
f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88]

f5_base = [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]
f5_CO = [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]
f5_O3 = [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]
f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]

fig = plt.figure(figsize=(9,9))
# adjust spacing around the subplots
theta = radar_factory(N, frame='polygon')

data = example_data()
spoke_labels = data.pop('column names')

fig = plt.figure(figsize=(9, 9))
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
title_list = ['Basecase', 'With CO', 'With O3', 'CO & O3']
data = {'Basecase': [f1_base, f2_base, f3_base, f4_base, f5_base],
'With CO': [f1_CO, f2_CO, f3_CO, f4_CO, f5_CO],
'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3],
'CO & O3': [f1_both, f2_both, f3_both, f4_both, f5_both]}

colors = ['b', 'r', 'g', 'm', 'y']
# chemicals range from 0 to 1
radial_grid = [0.2, 0.4, 0.6, 0.8]
# If you don't care about the order, you can loop over data_dict.items()
for n, title in enumerate(title_list):
# Plot the four cases from the example data on separate axes
for n, title in enumerate(data.keys()):
ax = fig.add_subplot(2, 2, n+1, projection='radar')
plt.rgrids(radial_grid)
plt.rgrids([0.2, 0.4, 0.6, 0.8])
ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
horizontalalignment='center', verticalalignment='center')
for d, color in zip(data[title], colors):
ax.plot(theta, d, color=color)
ax.fill(theta, d, facecolor=color, alpha=0.25)
ax.plot(theta, d, color=color)
ax.fill(theta, d, facecolor=color, alpha=0.25)
ax.set_varlabels(spoke_labels)

# add legend relative to top-left plot
plt.subplot(2,2,1)
labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
legend = plt.legend(labels, loc=(0.9, .95), labelspacing=0.1)
plt.setp(legend.get_texts(), fontsize='small')
plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
ha='center', color='black', weight='bold', size='large')

plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
ha='center', color='black', weight='bold', size='large')
plt.show()