Thanks to visit codestin.com
Credit goes to github.com

Skip to content

ENH: _StringFuncParser to get numerical functions callables from strings #7464

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Dec 15, 2016
256 changes: 256 additions & 0 deletions lib/matplotlib/cbook.py
Original file line number Diff line number Diff line change
Expand Up @@ -2661,3 +2661,259 @@ def __exit__(self, exc_type, exc_value, traceback):
os.rmdir(path)
except OSError:
pass


class _FuncInfo(object):
"""
Class used to store a function.

"""

def __init__(self, function, inverse, bounded_0_1=True, check_params=None):
"""
Parameters
----------

function : callable
A callable implementing the function receiving the variable as
first argument and any additional parameters in a list as second
argument.
inverse : callable
A callable implementing the inverse function receiving the variable
as first argument and any additional parameters in a list as
second argument. It must satisfy 'inverse(function(x, p), p) == x'.
bounded_0_1: bool or callable
A boolean indicating whether the function is bounded in the [0,1]
interval, or a callable taking a list of values for the additional
parameters, and returning a boolean indicating whether the function
is bounded in the [0,1] interval for that combination of
parameters. Default True.
check_params: callable or None
A callable taking a list of values for the additional parameters
and returning a boolean indicating whether that combination of
parameters is valid. It is only required if the function has
additional parameters and some of them are restricted.
Default None.

"""

self.function = function
self.inverse = inverse
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Naming preference: I suggest "function" and "inverse" rather than "direct" and "inverse".


if callable(bounded_0_1):
self._bounded_0_1 = bounded_0_1
else:
self._bounded_0_1 = lambda x: bounded_0_1

if check_params is None:
self._check_params = lambda x: True
elif callable(check_params):
self._check_params = check_params
else:
raise ValueError("Invalid 'check_params' argument.")

def is_bounded_0_1(self, params=None):
"""
Returns a boolean indicating if the function is bounded in the [0,1]
interval for a particular set of additional parameters.

Parameters
----------

params : list
The list of additional parameters. Default None.

Returns
-------

out : bool
True if the function is bounded in the [0,1] interval for
parameters 'params'. Otherwise False.

"""

return self._bounded_0_1(params)

def check_params(self, params=None):
"""
Returns a boolean indicating if the set of additional parameters is
valid.

Parameters
----------

params : list
The list of additional parameters. Default None.

Returns
-------

out : bool
True if 'params' is a valid set of additional parameters for the
function. Otherwise False.

"""

return self._check_params(params)


class _StringFuncParser(object):
"""
A class used to convert predefined strings into
_FuncInfo objects, or to directly obtain _FuncInfo
properties.

"""

_funcs = {}
_funcs['linear'] = _FuncInfo(lambda x: x,
lambda x: x,
True)
_funcs['quadratic'] = _FuncInfo(np.square,
np.sqrt,
True)
_funcs['cubic'] = _FuncInfo(lambda x: x**3,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

np.power, kwargs={x2:2}
maybe something like that?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But I am not sure how would that help, you would still need the lambda function to pass the kwargs, right?

In any case, I do not think it really is that relevant at this point, we are trying to do something relatively simple for a subset of functions (for which it can be tested) aimed to help FuncNorm and children. If we ever decide to make this accessible class directly accesible to end users, or to let users create their own cuestom _FuncInfo objects, then we can worry about these things.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

depends on how it'd be called in FuncNorm...(I'd argue FuncNorm should support passing in f=np.power, kwargs={}) too since that's common enough for numpy. Would also give users a way to call np.piecewise directly.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I agree that FuncNorm should support that (even though it is not as useful as it may seem, imagine a case where the variable is the second argument and not the first one). Anyway we can discuss that in the next PR.

IMO doing that here is a mistake, as it goes against what we are trying to achieve, which is to provide the simplest possible way to specify a simple function. For more complex cases, the user will always be able to use FuncNorm with callables directly, or with a new kwargs option based on your suggestion.

lambda x: x**(1. / 3),
True)
_funcs['sqrt'] = _FuncInfo(np.sqrt,
np.square,
True)
_funcs['cbrt'] = _FuncInfo(lambda x: x**(1. / 3),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this notation common?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, cbrt is used by numpy as scipy for the cubic root.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hmm, wondering now if there's a way to generically support any function if the name is passed in using a lookup of numpy math function names...(the implementation of the functions would also be pitched to numpy, which maybe should be happening anyway instead of lambdas...)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

getattr(np, name)

Copy link
Contributor Author

@alvarosg alvarosg Nov 16, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But this does not really work, because it would not give have access to the inverse function, unless, we explicitly include a list of corresponding inverse functions, which will limit in any case the usage to whatever we allow.
Also it would make the parameters option very complex, because in those cases we would not control the exact shape of the string.

I think with polynomials, roots, and offset logs we can probably cover everything that basic users will want to do, for normalizations. The advanced users can always provide the callables.

Copy link
Member

@story645 story645 Nov 16, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So even without getattr, I still prefer calling the numpy functions when possible because they're tested and optimized in a way a bunch of lambda functions aren't.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure, but this wil only be possible for the simples cases, none of the para-metrical cases would work, without the lambda. On the other hand inside the lambda the operators will be overloaded by numpy when working with arrays, so I do not think the reliability can be that different.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

shrugs I think there's potential for error/typos/etc. in writing your own and in theory the numpy functions are more robust. Also now wondering do you cast lists to arrays or are the lambda functions done in a comprehension in FuncNorm?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, everything is cast into a numpy type automatically.

lambda x: x**3,
True)
_funcs['log10'] = _FuncInfo(np.log10,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

think it should just be log and log{p} cases

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But by far the most common use case is log10; I think that use of any other base for a norm, or for most plotting purposes, will be somewhere between rare and nonexistent. Therefore it makes sense to leave in 'log10'.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I just think that since log10 is implicitly supported by logp, the redundancy isn't worth it unless it has significant time savings. But shrugs defer to you of coursen

lambda x: (10**(x)),
False)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

no base2? (Yeah, this all feels weirdly arbitrary)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, I should include log2

_funcs['log'] = _FuncInfo(np.log,
np.exp,
False)
_funcs['log2'] = _FuncInfo(np.log2,
lambda x: (2**x),
False)
_funcs['x**{p}'] = _FuncInfo(lambda x, p: x**p[0],
lambda x, p: x**(1. / p[0]),
True)
_funcs['root{p}(x)'] = _FuncInfo(lambda x, p: x**(1. / p[0]),
lambda x, p: x**p,
True)
_funcs['log{p}(x)'] = _FuncInfo(lambda x, p: (np.log(x) /
np.log(p[0])),
lambda x, p: p[0]**(x),
False,
lambda p: p[0] > 0)
_funcs['log10(x+{p})'] = _FuncInfo(lambda x, p: np.log10(x + p[0]),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

still don't think you need to bother with a log10 since you have the generic case and the user will never know (they have to write log10 anyway)

lambda x, p: 10**x - p[0],
lambda p: p[0] > 0)
_funcs['log(x+{p})'] = _FuncInfo(lambda x, p: np.log(x + p[0]),
lambda x, p: np.exp(x) - p[0],
lambda p: p[0] > 0)
_funcs['log{p}(x+{p})'] = _FuncInfo(lambda x, p: (np.log(x + p[1]) /
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

not sure why you don't do a generic 'log{p}' then instead of log10 since users will have to type log10 anyway

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I did it like this historically (there were no parameters at the beginning) and then keep it to in a similar way that log10, log and log2 exist separately in numpy. But you are right, being strings probably we can just keep 'log' and 'log{p}'. In any case I definitely should include 'log{p}' which is now missing.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

both log can be called log(x,2) or log(x,10) so I figure one unified call is cleaner here.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's decide about this later

np.log(p[0])),
lambda x, p: p[0]**(x) - p[1],
lambda p: p[1] > 0,
lambda p: p[0] > 0)

def __init__(self, str_func):
"""
Parameters
----------
str_func : string
String to be parsed.

"""

if not isinstance(str_func, six.string_types):
raise ValueError("'%s' must be a string." % str_func)
self._str_func = six.text_type(str_func)
self._key, self._params = self._get_key_params()
self._func = self._parse_func()

def _parse_func(self):
"""
Parses the parameters to build a new _FuncInfo object,
replacing the relevant parameters if necessary in the lambda
functions.

"""

func = self._funcs[self._key]

if not self._params:
func = _FuncInfo(func.function, func.inverse,
func.is_bounded_0_1())
else:
m = func.function
function = (lambda x, m=m: m(x, self._params))

m = func.inverse
inverse = (lambda x, m=m: m(x, self._params))

is_bounded_0_1 = func.is_bounded_0_1(self._params)

func = _FuncInfo(function, inverse,
is_bounded_0_1)
return func

@property
def func_info(self):
"""
Returns the _FuncInfo object.

"""
return self._func

@property
def function(self):
"""
Returns the callable for the direct function.

"""
return self._func.function

@property
def inverse(self):
"""
Returns the callable for the inverse function.

"""
return self._func.inverse

@property
def is_bounded_0_1(self):
"""
Returns a boolean indicating if the function is bounded
in the [0-1 interval].

"""
return self._func.is_bounded_0_1()

def _get_key_params(self):
str_func = self._str_func
# Checking if it comes with parameters
regex = '\{(.*?)\}'
params = re.findall(regex, str_func)

for i, param in enumerate(params):
try:
params[i] = float(param)
except ValueError:
raise ValueError("Parameter %i is '%s', which is "
"not a number." %
(i, param))

str_func = re.sub(regex, '{p}', str_func)

try:
func = self._funcs[str_func]
except (ValueError, KeyError):
raise ValueError("'%s' is an invalid string. The only strings "
"recognized as functions are %s." %
(str_func, list(self._funcs)))

# Checking that the parameters are valid
if not func.check_params(params):
raise ValueError("%s are invalid values for the parameters "
"in %s." %
(params, str_func))

return str_func, params
61 changes: 61 additions & 0 deletions lib/matplotlib/tests/test_cbook.py
Original file line number Diff line number Diff line change
Expand Up @@ -517,3 +517,64 @@ def test_flatiter():

assert 0 == next(it)
assert 1 == next(it)


class TestFuncParser(object):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if you insist on writing your own lambdas instead of using numpy, then please test that the lambda functions are correct (no stray typos or the like)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is a parametric test for each possible case, and it tests both the direct and the inverse, so it should be ok.

x_test = np.linspace(0.01, 0.5, 3)
validstrings = ['linear', 'quadratic', 'cubic', 'sqrt', 'cbrt',
'log', 'log10', 'log2', 'x**{1.5}', 'root{2.5}(x)',
'log{2}(x)',
'log(x+{0.5})', 'log10(x+{0.1})', 'log{2}(x+{0.1})',
'log{2}(x+{0})']
results = [(lambda x: x),
np.square,
(lambda x: x**3),
np.sqrt,
(lambda x: x**(1. / 3)),
np.log,
np.log10,
np.log2,
(lambda x: x**1.5),
(lambda x: x**(1 / 2.5)),
(lambda x: np.log2(x)),
(lambda x: np.log(x + 0.5)),
(lambda x: np.log10(x + 0.1)),
(lambda x: np.log2(x + 0.1)),
(lambda x: np.log2(x))]

bounded_list = [True, True, True, True, True,
False, False, False, True, True,
False,
True, True, True,
False]

@pytest.mark.parametrize("string, func",
zip(validstrings, results),
ids=validstrings)
def test_values(self, string, func):
func_parser = cbook._StringFuncParser(string)
f = func_parser.function
assert_array_almost_equal(f(self.x_test), func(self.x_test))

@pytest.mark.parametrize("string", validstrings, ids=validstrings)
def test_inverse(self, string):
func_parser = cbook._StringFuncParser(string)
f = func_parser.func_info
fdir = f.function
finv = f.inverse
assert_array_almost_equal(finv(fdir(self.x_test)), self.x_test)

@pytest.mark.parametrize("string", validstrings, ids=validstrings)
def test_get_inverse(self, string):
func_parser = cbook._StringFuncParser(string)
finv1 = func_parser.inverse
finv2 = func_parser.func_info.inverse
assert_array_almost_equal(finv1(self.x_test), finv2(self.x_test))

@pytest.mark.parametrize("string, bounded",
zip(validstrings, bounded_list),
ids=validstrings)
def test_bounded(self, string, bounded):
func_parser = cbook._StringFuncParser(string)
b = func_parser.is_bounded_0_1
assert_array_equal(b, bounded)