Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Official Implementation of the Transformer and Mamba models from the Music to Dance as Language Translation using Sequence Models paper. Translate music pieces to dance poses.

Notifications You must be signed in to change notification settings

meowatthemoon/MDLT

Repository files navigation

Music to Dance as Language Translation using Sequence Models
André Correia, Luís A. Alexandre
Paper: https://arxiv.org/abs/2403.15569

Video Preview

Video Demonstration

Pre-Processing

If you want to extract audio and pose features from a data set, you can find example code for AIST++ and PhantomDance data sets in the processing directory.

Otherwise, you can download the processed AIST++ and PhantomDance data bellow:

Google Drive link

Install Anaconda

sudo apt-get install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2 libxss1 libxcursor1 libxcomposite1 libasound2 libxi6 libxtst6

curl -O https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

bash Anaconda3-2024.02-1-Linux-x86_64.sh

conda init

Create and activate environment

conda create --name MDLT

conda activate MDLT

Install Dependencies

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

pip3 install numpy

pip3 install transformers

pip install causal-conv1d>=1.2.0

pip install mamba-ssm

Train

Train Transformer on AIST++

python3 main_transformer_aist.py --genre 'all' --infer_every 1000 --K 20 --n_epochs 50000 --infer_every 5000 --n_layer 6 --d_model 128 --val_index 0

Train Transformer on AIST++ "mLH" genre

python3 main_transformer_aist.py --genre 'mLH' --infer_every 1000 --K 20 --n_epochs 50000 --infer_every 5000 --n_layer 6 --d_model 128 --val_index 0

Train Transformer on PhantomDance

python3 main_transformer_phantom.py  --infer_every 1000 --K 20 --n_epochs 50000 --infer_every 5000 --n_layer 6 --d_model 128 --val_type 0

Citation

If you use this codebase, or otherwise found our work valuable, please cite MDLT:

@misc{correia2024music,
      title={Music to Dance as Language Translation using Sequence Models}, 
      author={André Correia and Luís A. Alexandre},
      year={2024},
      eprint={2403.15569},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

About

Official Implementation of the Transformer and Mamba models from the Music to Dance as Language Translation using Sequence Models paper. Translate music pieces to dance poses.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages