Thanks to visit codestin.com
Credit goes to github.com

Skip to content

nirmalkumar1996/DeepLog-LSTM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

DeepLog LSTM

"DeepLog LSTM: Anomaly Detection using LSTM and AI based root cause analysis

Getting Started

  1. Build environment

    git clone <repo>
    cd DeepLog-LSTM
    python -m venv venv
    . venv/bin/activate
    pip install -r requirements.txt
  2. Run local example

    We use open data OpenStack from logpai's loghub

    2.1. Preprocess

    cd example/
    python preprocess.py

    2.2. Train

    num-class is count of event_id_map, where event_id_map is generated by preprocess.py. num-candidates is self-define, here we define num-candidates is num-class*0.1

    python train.py --num-class 1143 --num-candidates 114 --epochs 35 --window-size 3 --local True

    2.3. Predict

    python predict.py --threshold 25

    2.4. UI

    streamlit run frontend.py

    Note: add your openai key to .streamlit/secrets.toml in project folder OPENAI_API_KEY=""

  3. Result

    Accuracy 0.9525801
    Precision 0.9235754
    Recall 0.6523478
    F1 0.7646214

Folder Structure

.
├── README.md
├── deeplog
│   ├── __init__.py
│   └── deeplog.py
├── example
│   ├── data
│   │   └── OpenStack
│   │       ├── anomaly_labels.txt
│   │       ├── openstack_abnormal.log
│   │       ├── openstack_normal1.log
│   │       └── openstack_normal2.log
│   ├── predict.py
│   ├── preprocess.py
│   ├── train.py
│   └── frontend.py
└── requirements.txt

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages