Table of Contents
Sign language generation and recognition using synthetic data augmentation. Repository for the models and experiments used in the paper Sign Generation for Data Augmentation.
Conditional Human motion prediction model:
- CMLPe
Sign language recognition models:
- Mamba
- Transformer
Generate and classify sign language gestures with HandCraft. To do it follow these steps:
Clone the repo
git clone https://github.com/okason97/HandCraft.git- Create a config file. Examples in /src/configs
- Use /script.sh to use the models.
Sign Language Recognition
./script.sh classification mamba original128-pad LSFBSign Language Generation
./script.sh cond_prediction CsiMLPe depth_big_noise_0.1 LSFBExample of a generated sequence:

Paper: HandCraft: Dynamic Sign Generation for Synthetic Data Augmentation
If you use this work in your research, please cite:
@misc{rios2025handcraftdynamicsigngeneration,
title={HandCraft: Dynamic Sign Generation for Synthetic Data Augmentation},
author={Gaston Gustavo Rios and Pedro Dal Bianco and Franco Ronchetti and Facundo Quiroga and Oscar Stanchi and Santiago Ponte Ahón and Waldo Hasperué},
year={2025},
eprint={2508.14345},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.14345},
}Distributed under the MIT License. See LICENSE.txt for more information.
Gaston Rios - [email protected]
