An extensible Model Context Protocol (MCP) server that provides intelligent semantic code search for AI assistants. Built with local AI models using Matryoshka Representation Learning (MRL) for flexible embedding dimensions (64-768d), with runtime workspace switching and comprehensive status reporting.
| Tool | Description | Example |
|---|---|---|
semantic_search |
Find code by meaning, not just keywords | "Where do we validate user input?" |
index_codebase |
Manually trigger reindexing | Use after major refactoring or branch switches |
clear_cache |
Reset the embeddings cache | Useful when cache becomes corrupted |
d_check_last_version |
Get latest version of any package (20 ecosystems) | "express", "npm:react", "pip:requests" |
e_set_workspace |
Change project path at runtime | Switch to different project without restart |
f_get_status |
Get server info: version, index status, config | Check indexing progress, model info, cache size |
AI coding assistants work better when they can find relevant code quickly. Traditional keyword search falls short - if you ask "where do we handle authentication?" but your code uses "login" and "session", keyword search misses it.
This MCP server solves that by indexing your codebase with AI embeddings. Your AI assistant can search by meaning instead of exact keywords, finding relevant code even when the terminology differs.
Better Code Understanding
- Search finds code by concept, not just matching words
- Works with typos and variations in terminology
- Natural language queries like "where do we validate user input?"
Performance
- Pre-indexed embeddings are faster than scanning files at runtime
- Smart project detection skips dependencies automatically (node_modules, vendor, etc.)
- Incremental updates - only re-processes changed files
Privacy
- Everything runs locally on your machine
- Your code never leaves your system
- No API calls to external services
Install globally via npm:
npm install -g smart-coding-mcpTo update to the latest version:
npm update -g smart-coding-mcpAdd to your MCP configuration file. The location depends on your IDE and OS:
| IDE | OS | Config Path |
|---|---|---|
| Claude Desktop | macOS | ~/Library/Application Support/Claude/claude_desktop_config.json |
| Claude Desktop | Windows | %APPDATA%\Claude\claude_desktop_config.json |
| Cascade (Cursor) | All | Configured via UI Settings > Features > MCP |
| Antigravity | macOS | ~/.gemini/antigravity/mcp_config.json |
| Antigravity | Windows | %USERPROFILE%\.gemini\antigravity\mcp_config.json |
Add the server configuration to the mcpServers object in your config file:
{
"mcpServers": {
"smart-coding-mcp": {
"command": "smart-coding-mcp",
"args": ["--workspace", "/absolute/path/to/your/project"]
}
}
}{
"mcpServers": {
"smart-coding-mcp-frontend": {
"command": "smart-coding-mcp",
"args": ["--workspace", "/path/to/frontend"]
},
"smart-coding-mcp-backend": {
"command": "smart-coding-mcp",
"args": ["--workspace", "/path/to/backend"]
}
}
}
⚠️ Warning: Most MCP clients (including Antigravity and Claude Desktop) do NOT support${workspaceFolder}variable expansion. The server will exit with an error if the variable is not expanded.
For clients that support dynamic variables (VS Code, Cursor):
{
"mcpServers": {
"smart-coding-mcp": {
"command": "smart-coding-mcp",
"args": ["--workspace", "${workspaceFolder}"]
}
}
}| Client | Supports ${workspaceFolder} |
|---|---|
| VS Code | Yes |
| Cursor (Cascade) | Yes |
| Antigravity | No ❌ |
| Claude Desktop | No ❌ |
Override configuration settings via environment variables in your MCP config:
| Variable | Type | Default | Description |
|---|---|---|---|
SMART_CODING_VERBOSE |
boolean | false |
Enable detailed logging |
SMART_CODING_BATCH_SIZE |
number | 100 |
Files to process in parallel |
SMART_CODING_MAX_FILE_SIZE |
number | 1048576 |
Max file size in bytes (1MB) |
SMART_CODING_CHUNK_SIZE |
number | 25 |
Lines of code per chunk |
SMART_CODING_MAX_RESULTS |
number | 5 |
Max search results |
SMART_CODING_SMART_INDEXING |
boolean | true |
Enable smart project detection |
SMART_CODING_WATCH_FILES |
boolean | false |
Enable file watching for auto-reindex |
SMART_CODING_SEMANTIC_WEIGHT |
number | 0.7 |
Weight for semantic similarity (0-1) |
SMART_CODING_EXACT_MATCH_BOOST |
number | 1.5 |
Boost for exact text matches |
SMART_CODING_EMBEDDING_MODEL |
string | nomic-ai/nomic-embed-text-v1.5 |
AI embedding model to use |
SMART_CODING_EMBEDDING_DIMENSION |
number | 256 |
MRL dimension (64, 128, 256, 512, 768) |
SMART_CODING_DEVICE |
string | cpu |
Inference device (cpu, webgpu, auto) |
SMART_CODING_CHUNKING_MODE |
string | smart |
Code chunking (smart, ast, line) |
SMART_CODING_WORKER_THREADS |
string | auto |
Worker threads (auto or 1-32) |
Example with environment variables:
{
"mcpServers": {
"smart-coding-mcp": {
"command": "smart-coding-mcp",
"args": ["--workspace", "/path/to/project"],
"env": {
"SMART_CODING_VERBOSE": "true",
"SMART_CODING_BATCH_SIZE": "200",
"SMART_CODING_MAX_FILE_SIZE": "2097152"
}
}
}
}Note: The server starts instantly and indexes in the background, so your IDE won't be blocked waiting for indexing to complete.
flowchart TB
subgraph IDE["IDE / AI Assistant"]
Agent["AI Agent<br/>(Claude, GPT, Gemini)"]
end
subgraph MCP["Smart Coding MCP Server"]
direction TB
Protocol["Model Context Protocol<br/>JSON-RPC over stdio"]
Tools["MCP Tools<br/>semantic_search | index_codebase | set_workspace | get_status"]
subgraph Indexing["Indexing Pipeline"]
Discovery["File Discovery<br/>glob patterns + smart ignore"]
Chunking["Code Chunking<br/>Smart (regex) / AST (Tree-sitter)"]
Embedding["AI Embedding<br/>transformers.js + ONNX Runtime"]
end
subgraph AI["AI Model"]
Model["nomic-embed-text-v1.5<br/>Matryoshka Representation Learning"]
Dimensions["Flexible Dimensions<br/>64 | 128 | 256 | 512 | 768"]
Normalize["Layer Norm → Slice → L2 Normalize"]
end
subgraph Search["Search"]
QueryEmbed["Query → Vector"]
Cosine["Cosine Similarity"]
Hybrid["Hybrid Search<br/>Semantic + Exact Match Boost"]
end
end
subgraph Storage["Cache"]
Vectors["Vector Store<br/>embeddings.json"]
Hashes["File Hashes<br/>Incremental updates"]
end
Agent <-->|"MCP Protocol"| Protocol
Protocol --> Tools
Tools --> Discovery
Discovery --> Chunking
Chunking --> Embedding
Embedding --> Model
Model --> Dimensions
Dimensions --> Normalize
Normalize --> Vectors
Tools --> QueryEmbed
QueryEmbed --> Model
Cosine --> Hybrid
Vectors --> Cosine
Hybrid --> Agent
| Component | Technology |
|---|---|
| Protocol | Model Context Protocol (JSON-RPC) |
| AI Model | nomic-embed-text-v1.5 (MRL) |
| Inference | transformers.js + ONNX Runtime |
| Chunking | Smart regex / Tree-sitter AST |
| Search | Cosine similarity + exact match boost |
Query → Vector embedding → Cosine similarity → Ranked results
Natural language search:
Query: "How do we handle cache persistence?"
Result:
// lib/cache.js (Relevance: 38.2%)
async save() {
await fs.writeFile(cacheFile, JSON.stringify(this.vectorStore));
await fs.writeFile(hashFile, JSON.stringify(this.fileHashes));
}Typo tolerance:
Query: "embeding modle initializashun"
Still finds embedding model initialization code despite multiple typos.
Conceptual search:
Query: "error handling and exceptions"
Finds all try/catch blocks and error handling patterns.
- AI model runs entirely on your machine
- No network requests to external services
- No telemetry or analytics
- Cache stored locally in
.smart-coding-cache/
Embedding Model: nomic-embed-text-v1.5 via transformers.js v3
- Matryoshka Representation Learning (MRL) for flexible dimensions
- Configurable output: 64, 128, 256, 512, or 768 dimensions
- Longer context (8192 tokens vs 256 for MiniLM)
- Better code understanding through specialized training
- WebGPU support for up to 100x faster inference (when available)
Legacy Model: all-MiniLM-L6-v2 (fallback)
- Fast inference, small footprint (~100MB)
- Fixed 384-dimensional output
Vector Similarity: Cosine similarity
- Efficient comparison of embeddings
- Normalized vectors for consistent scoring
Hybrid Scoring: Combines semantic similarity with exact text matching
- Semantic weight: 0.7 (configurable)
- Exact match boost: 1.5x (configurable)
This project builds on research from Cursor showing that semantic search improves AI coding agent performance by 12.5% on average across question-answering tasks. The key insight is that AI assistants benefit more from relevant context than from large amounts of context.
See: https://cursor.com/blog/semsearch
MIT License
Copyright (c) 2025 Omar Haris
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
