Thanks to visit codestin.com
Credit goes to github.com

Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 22 additions & 1 deletion aten/src/ATen/ScalarOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,28 @@ namespace at {
namespace {
template <typename scalar_t>
inline void fill_inplace(Tensor& self, const Scalar& value_scalar) {
auto value = value_scalar.to<scalar_t>();
scalar_t value{};

if constexpr (std::is_same_v<scalar_t, at::Half> ||
std::is_same_v<scalar_t, at::BFloat16> ||
std::is_same_v<scalar_t, at::Float8_e5m2> ||
std::is_same_v<scalar_t, at::Float8_e5m2fnuz> ||
std::is_same_v<scalar_t, at::Float8_e4m3fn> ||
std::is_same_v<scalar_t, at::Float8_e4m3fnuz> ||
std::is_same_v<scalar_t, at::Float8_e8m0fnu>) {
// relaxed float cast: allow inf similar to the torch.tensor constructor
//
// without this, we had the following divergence:
// torch.tensor(1123581321.0, dtype=torch.float16)
// => tensor(inf, dtype=torch.float16)
// torch.ops.aten.scalar_tensor.default(1123581321, dtype=torch.float16)
// => RuntimeError: value cannot be converted to type at::Half without overflow

value = static_cast<scalar_t>(value_scalar.to<double>());
} else {
value = value_scalar.to<scalar_t>();
}

scalar_t* dptr = static_cast<scalar_t*>(self.data_ptr());
*dptr = value;
}
Expand Down
32 changes: 32 additions & 0 deletions test/dynamo/test_misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -12955,6 +12955,38 @@ def f(actions, n_act, epsilon=0.1):
y = torch.tensor(5)
f(x, y)

def test_dynamic_float_scalar_tensor_coersion(self):
# Minified version of https://github.com/pytorch/pytorch/issues/158376#issuecomment-3079591367
class Foo:
def __init__(self):
self.config = type(
"Config", (), {"pad_val": 1123581321.0, "tolerance": 1e-6}
)

@torch.compile(fullgraph=True)
def forward(self, input):
outputs = torch.where(
torch.abs(input - self.config.pad_val) < self.config.tolerance,
torch.tensor(
self.config.pad_val, dtype=input.dtype, device=input.device
),
torch.tensor(
self.config.pad_val + 1, dtype=input.dtype, device=input.device
),
)
return outputs

foo = Foo()
inputs = torch.randn(3, 4)
result = foo.forward(inputs)

original_pad_val = foo.config.pad_val
foo.config.pad_val += 1.0
result2 = foo.forward(inputs)

# Previously would crash with:
# RuntimeError: value cannot be converted to type at::Half without overflow


devices = ("cuda", "hpu")
instantiate_device_type_tests(MiscTestsDevice, globals(), only_for=devices)
Expand Down
Loading