Official Python SDK for RecallrAI – a revolutionary contextual memory system that enables AI assistants to form meaningful connections between conversations, just like human memory.
Install the SDK via Poetry or pip:
poetry add recallrai
# or
pip install recallrai
Create a client instance with your API key and project ID:
from recallrai import RecallrAI
api_key = "rai_yourapikey"
project_id = "project-uuid"
client = RecallrAI(api_key=api_key, project_id=project_id)
from recallrai.user import User
user_id = "user123"
metadata = {"key": "value"}
user = client.create_user(user_id=user_id, metadata=metadata)
print("Created user:", user.user_id)
user = client.get_user("user123")
print("User metadata:", user.metadata)
user_list = client.list_users(offset=0, limit=10)
for user in user_list.users:
print(user.user_id, user.metadata)
# Update the user's metadata and/or change the user ID
updated_user = client.update_user(user_id="user123", new_metadata={"role": "user"}, new_user_id="user1234")
print("Updated user id:", updated_user.user_id)
client.delete_user("user1234")
print("User deleted.")
from recallrai.session import Session
# Create a session for a user; auto_process_after_minutes set to -1 disables auto-processing.
session = client.create_session(user_id="user123", auto_process_after_minutes=5)
print("Created session id:", session.session_id)
# Retrieve an existing session by its ID
session = client.get_session(user_id="user123", session_id="session-uuid")
print("Session status:", session.get_status())
session_list = client.list_sessions(user_id="user123", offset=0, limit=10)
for session in session_list.sessions:
print(session.session_id, session.status)
session.add_user_message("Hello! How are you?")
context = session.get_context()
print("Memory used:", context.memory_used)
print("Context:", context.context)
session.add_assistant_message("I'm an assistant. How can I help you?")
session.process()
status = session.get_status()
print("Session status:", status)
messages = session.get_messages()
for message in messages:
print(f"{message.role}: {message.content} at {message.timestamp}")
import openai
from recallrai import RecallrAI
# Initialize RecallrAI and OpenAI clients
recallrai_client = RecallrAI(api_key="rai_yourapikey", project_id="project-uuid")
openai_client = openai.OpenAI(api_key="your-openai-api-key")
def chat_with_memory(user_id, session_id=None):
# Get or create user
try:
user = recallrai_client.get_user(user_id)
except:
user = recallrai_client.create_user(user_id)
# Create a new session or get an existing one
if session_id:
session = recallrai_client.get_session(user_id=user_id, session_id=session_id)
else:
session = recallrai_client.create_session(user_id=user_id, auto_process_after_minutes=30)
print(f"Created new session: {session.session_id}")
print("Chat session started. Type 'exit' to end the conversation.")
while True:
# Get user input
user_message = input("You: ")
if user_message.lower() == 'exit':
break
# Add the user message to RecallrAI
session.add_user_message(user_message)
# Get context from RecallrAI after adding the user message
context = session.get_context()
# Create a system prompt that includes the context
system_prompt = f"""You are a helpful assistant with memory of previous conversations.
MEMORIES ABOUT THE USER:
{context.context}
You can use the above memories to provide better responses to the user.
Don't mention that you have access to memories unless you are explicitly asked."""
# Get previous messages
previous_messages = session.get_messages()
previous_messages = [{"role": message.role, "content": message.content} for message in previous_messages]
# Call the LLM with the system prompt and user message
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_prompt},
**previous_messages,
],
temperature=0.7
)
assistant_message = response.choices[0].message.content
# Print the assistant's response
print(f"Assistant: {assistant_message}")
# Add the assistant's response to RecallrAI
session.add_assistant_message(assistant_message)
# Process the session at the end of the conversation
print("Processing session to update memory...")
session.process()
print(f"Session ended. Session ID: {session.session_id}")
return session.session_id
# Example usage
if __name__ == "__main__":
user_id = "user123"
# To continue a previous session, uncomment below and provide the session ID
# previous_session_id = "previously-saved-session-uuid"
# session_id = chat_with_memory(user_id, previous_session_id)
# Start a new session
session_id = chat_with_memory(user_id)
print(f"To continue this conversation later, use session ID: {session_id}")
Exception handling will be improved in future. Each operation may raise custom exceptions defined in the SDK:
from recallrai.utils.exceptions import NotFoundError, ValidationError
try:
user = client.get_user("nonexistent_id")
except NotFoundError as e:
print("User not found:", e.message)
except ValidationError as e:
print("Invalid input:", e.message)
This README outlines the basic usage of the RecallrAI SDK functions for user and session management. For additional documentation and advanced usage, please see the official documentation or the source code repository on GitHub.