Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Locality Sensitive Hashing in Rust with Python bindings

License

Notifications You must be signed in to change notification settings

ritchie46/lsh-rs

Repository files navigation

lsh-rs (Locality Sensitive Hashing)

rust docs Build Status

Locality sensitive hashing can help retrieving Approximate Nearest Neighbors in sub-linear time.

For more information on the subject see:

Implementations

  • Base LSH
    • Signed Random Projections (Cosine similarity)
    • L2 distance
    • MIPS (Dot products/ Maximum Inner Product Search)
    • MinHash (Jaccard Similarity)
  • Multi Probe LSH
    • Step wise probing
      • SRP (only bit shifts)
    • Query directed probing
      • L2
      • MIPS
  • Generic numeric types

Getting started

use lsh_rs::LshMem;
// 2 rows w/ dimension 3.
let p = &[vec![1., 1.5, 2.],
        vec![2., 1.1, -0.3]];

// Do one time expensive preprocessing.
let n_projections = 9;
let n_hash_tables = 30;
let dim = 10;
let dim = 3;
let mut lsh = LshMem::new(n_projections, n_hash_tables, dim)
    .srp()
    .unwrap();
lsh.store_vecs(p);

// Query in sublinear time.
let query = &[1.1, 1.2, 1.2];
lsh.query_bucket(query);

Documentation

Python

At the moment, the Python bindings are only compiled for Linux x86_64 systems.

$ pip install floky

from floky import SRP
import numpy as np

N = 10000
n = 100
dim = 10

# Generate some random data points
data_points = np.random.randn(N, dim)

# Do a one time (expensive) fit.
lsh = SRP(n_projections=19, n_hash_tables=10)
lsh.fit(data_points)

# Query approximated nearest neigbors in sub-linear time
query = np.random.randn(n, dim)
results = lsh.predict(query)

About

Locality Sensitive Hashing in Rust with Python bindings

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages