Using deepspeed stage 3 with offload to cpu and using 2 x RTX 3090 GPU, I was able to train facebook/opt-2.7B model.
python prepare_metamath_data.py --data_size 1000
Run the commands:
git clone https://github.com/saultaut/math-ai.git
cd math-ai/
pip install -r requirements_runpod.txt
bash scripts/metamath/generate_metamath.sh
The output will be saved to data/metamath/model_generation/train_500/ and file should be like responses_n1_*.jsonl
Connected remotly using VS Code to RunPod instace with GPU 3080. Everything worked. This uses small Opt-125m model.
python train_verifier_debug_metamath.py
Run the commands:
git clone https://github.com/saultaut/math-ai.git
cd math-ai/
pip install -r requirements_runpod.txt
bash scripts/metamath/train_verifier_metamath.sh
Output will be save in /models/metamath/verifiers/
git clone https://github.com/saultaut/math-ai.git
cd math-ai/
pip install -r requirements_runpod.txt
huggingface-cli login
huggingface-cli download sauliuz/opt-125mln-verifier --local-dir ./models/metamath/verifiers/
bash scripts/metamath/eval_step_beam_mistral.sh
or
bash scripts/metamath/eval_step_beam.sh
huggingface-cli login
huggingface-cli upload sauliuz/opt-125mln-verifier ./models/metamath/verifiers/ .
This will create a folder in HF with the name of verifier with all required files.