@@ -135,7 +135,6 @@ def check_pairwise_arrays(
135
135
safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features)
136
136
An array equal to Y if Y was not None, guaranteed to be a numpy array.
137
137
If Y was None, safe_Y will be a pointer to X.
138
-
139
138
"""
140
139
X , Y , dtype_float = _return_float_dtype (X , Y )
141
140
@@ -1508,7 +1507,6 @@ def distance_metrics():
1508
1507
=============== ========================================
1509
1508
1510
1509
Read more in the :ref:`User Guide <metrics>`.
1511
-
1512
1510
"""
1513
1511
return PAIRWISE_DISTANCE_FUNCTIONS
1514
1512
@@ -2082,8 +2080,7 @@ def pairwise_kernels(
2082
2080
2083
2081
Parameters
2084
2082
----------
2085
- X : ndarray of shape (n_samples_X, n_samples_X) or \
2086
- (n_samples_X, n_features)
2083
+ X : ndarray of shape (n_samples_X, n_samples_X) or (n_samples_X, n_features)
2087
2084
Array of pairwise kernels between samples, or a feature array.
2088
2085
The shape of the array should be (n_samples_X, n_samples_X) if
2089
2086
metric == "precomputed" and (n_samples_X, n_features) otherwise.
@@ -2121,8 +2118,7 @@ def pairwise_kernels(
2121
2118
2122
2119
Returns
2123
2120
-------
2124
- K : ndarray of shape (n_samples_X, n_samples_X) or \
2125
- (n_samples_X, n_samples_Y)
2121
+ K : ndarray of shape (n_samples_X, n_samples_X) or (n_samples_X, n_samples_Y)
2126
2122
A kernel matrix K such that K_{i, j} is the kernel between the
2127
2123
ith and jth vectors of the given matrix X, if Y is None.
2128
2124
If Y is not None, then K_{i, j} is the kernel between the ith array
@@ -2131,7 +2127,6 @@ def pairwise_kernels(
2131
2127
Notes
2132
2128
-----
2133
2129
If metric is 'precomputed', Y is ignored and X is returned.
2134
-
2135
2130
"""
2136
2131
# import GPKernel locally to prevent circular imports
2137
2132
from ..gaussian_process .kernels import Kernel as GPKernel
0 commit comments