Thanks to visit codestin.com
Credit goes to github.com

Skip to content

FIX use correct formulation for ExpSineSquared kernel #20070

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 29 additions & 26 deletions examples/gaussian_process/plot_compare_gpr_krr.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,40 +56,43 @@

import matplotlib.pyplot as plt

from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import GridSearchCV
# from sklearn.kernel_ridge import KernelRidge
# from sklearn.model_selection import GridSearchCV
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared
from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared, RBF

rng = np.random.RandomState(0)

# Generate sample data
X = 15 * rng.rand(100, 1)
y = np.sin(X).ravel()
y += 3 * (0.5 - rng.rand(X.shape[0])) # add noise

# Fit KernelRidge with parameter selection based on 5-fold cross validation
param_grid = {"alpha": [1e0, 1e-1, 1e-2, 1e-3],
"kernel": [ExpSineSquared(l, p)
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)]}
kr = GridSearchCV(KernelRidge(), param_grid=param_grid)
stime = time.time()
kr.fit(X, y)
print("Time for KRR fitting: %.3f" % (time.time() - stime))

gp_kernel = ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) \
y += 1.5 * (0.5 - rng.rand(X.shape[0])) # add noise

# # Fit KernelRidge with parameter selection based on 5-fold cross validation
# param_grid = {"alpha": [1e0, 1e-1, 1e-2, 1e-3],
# "kernel": [ExpSineSquared(l, p)
# for l in np.logspace(-2, 2, 10)
# for p in np.logspace(0, 2, 10)]}
# kr = GridSearchCV(KernelRidge(), param_grid=param_grid)
# stime = time.time()
# kr.fit(X, y)
# print("Time for KRR fitting: %.3f" % (time.time() - stime))

gp_kernel = (
ExpSineSquared(1.0, periodicity=5.0, periodicity_bounds=(1e-2, 1e1))
* RBF(length_scale=10, length_scale_bounds=(1e-2, 1e2))
+ WhiteKernel(1e-1)
gpr = GaussianProcessRegressor(kernel=gp_kernel)
)
gpr = GaussianProcessRegressor(kernel=gp_kernel, normalize_y=True)
stime = time.time()
gpr.fit(X, y)
print("Time for GPR fitting: %.3f" % (time.time() - stime))

# Predict using kernel ridge
X_plot = np.linspace(0, 20, 10000)[:, None]
stime = time.time()
y_kr = kr.predict(X_plot)
print("Time for KRR prediction: %.3f" % (time.time() - stime))
# # Predict using kernel ridge
X_plot = np.linspace(0, 40, 1000)[:, None]
# stime = time.time()
# y_kr = kr.predict(X_plot)
# print("Time for KRR prediction: %.3f" % (time.time() - stime))

# Predict using gaussian process regressor
stime = time.time()
Expand All @@ -106,16 +109,16 @@
lw = 2
plt.scatter(X, y, c='k', label='data')
plt.plot(X_plot, np.sin(X_plot), color='navy', lw=lw, label='True')
plt.plot(X_plot, y_kr, color='turquoise', lw=lw,
label='KRR (%s)' % kr.best_params_)
# plt.plot(X_plot, y_kr, color='turquoise', lw=lw,
# label='KRR (%s)' % kr.best_params_)
plt.plot(X_plot, y_gpr, color='darkorange', lw=lw,
label='GPR (%s)' % gpr.kernel_)
plt.fill_between(X_plot[:, 0], y_gpr - y_std, y_gpr + y_std, color='darkorange',
alpha=0.2)
plt.xlabel('data')
plt.ylabel('target')
plt.xlim(0, 20)
plt.xlim(0, 40)
plt.ylim(-4, 4)
plt.title('GPR versus Kernel Ridge')
plt.legend(loc="best", scatterpoints=1, prop={'size': 8})
plt.legend(loc="best", scatterpoints=1, prop={'size': 8})
plt.show()
63 changes: 44 additions & 19 deletions sklearn/gaussian_process/kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -1975,35 +1975,60 @@ def __call__(self, X, Y=None, eval_gradient=False):
is True.
"""
X = np.atleast_2d(X)
periodic_cst = np.pi / self.periodicity

if Y is None:
dists = squareform(pdist(X, metric='euclidean'))
arg = np.pi * dists / self.periodicity
sin_of_arg = np.sin(arg)
K = np.exp(- 2 * (sin_of_arg / self.length_scale) ** 2)
# K = exp(-2/l^2 * sum_i( sin^2 (pi/p * (x_i - x_i')) ))
dists = squareform(pdist(
X,
metric=lambda u, v:
np.sum(np.sin(periodic_cst * (u - v)) ** 2)
))
K = np.exp(-2 * dists / self.length_scale ** 2)
else:
if eval_gradient:
raise ValueError(
"Gradient can only be evaluated when Y is None.")
dists = cdist(X, Y, metric='euclidean')
K = np.exp(- 2 * (np.sin(np.pi / self.periodicity * dists)
/ self.length_scale) ** 2)
# K = exp(-2/l^2 * sum_i( sin^2 (pi/p * (x_i - y_i)) ))
dists = cdist(
X, Y,
metric=lambda u, v:
np.sum(np.sin(periodic_cst * (u - v)) ** 2)
)
K = np.exp(-2 * dists / self.length_scale ** 2)

if eval_gradient:
cos_of_arg = np.cos(arg)
# gradient with respect to length_scale
if not self.hyperparameter_length_scale.fixed:
length_scale_gradient = \
4 / self.length_scale**2 * sin_of_arg**2 * K
length_scale_gradient = length_scale_gradient[:, :, np.newaxis]
else: # length_scale is kept fixed
# dK/dl = 4/l^3 * K * sum_i( sin^2 (pi/p * (x_i - x_i')) )
length_scale_gradient = 4 / self.length_scale ** 3
length_scale_gradient *= K
length_scale_gradient *= dists
length_scale_gradient = length_scale_gradient[..., np.newaxis]
else:
length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0))
# gradient with respect to p

if not self.hyperparameter_periodicity.fixed:
periodicity_gradient = \
4 * arg / self.length_scale**2 * cos_of_arg \
* sin_of_arg * K
periodicity_gradient = periodicity_gradient[:, :, np.newaxis]
else: # p is kept fixed
# dK/dp = (4 * pi)/(l^2 * p^2) * sum_i(
# sin(pi/p * (x_i - x_i')) *
# cos(pi/p * (x_i - x_i')) *
# (x_i - x_i')
# )
periodicity_gradient = (4 * np.pi) / (
self.length_scale ** 2 * self.periodicity ** 2
)
periodicity_gradient *= K
periodicity_gradient *= squareform(
pdist(
X,
metric=lambda u, v: np.sum(
np.sin(periodic_cst * (u - v))
* np.cos(periodic_cst * (u - v))
* (u - v)
),
)
)
periodicity_gradient = periodicity_gradient[..., np.newaxis]
else:
periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0))

return K, np.dstack((length_scale_gradient, periodicity_gradient))
Expand Down
38 changes: 38 additions & 0 deletions sklearn/gaussian_process/tests/test_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -367,3 +367,41 @@ def test_rational_quadratic_kernel():
)
with pytest.raises(AttributeError, match=message):
kernel(X)


def test_xxx():
from sklearn.gaussian_process import GaussianProcessRegressor
rng = np.random.RandomState(0)

# Generate sample data
X = 15 * rng.rand(10, 1)
y = np.sin(X).ravel()
y += 3 * (0.5 - rng.rand(X.shape[0])) # add noise

gp_kernel = (
ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) +
WhiteKernel(1e-1)
)
gpr = GaussianProcessRegressor(kernel=gp_kernel, normalize_y=True)
gpr.fit(X, y)


def test_yyy():
import numpy as np
from sklearn.gaussian_process.kernels import ExpSineSquared

L = 1.0

# create some train/test data on a grid
train_len = 4
r = np.linspace(0, L, train_len)
train_x, train_y = np.meshgrid(r, r)
train_in = np.stack((train_x.flatten(), train_y.flatten()), axis=-1)

# get the kernel
kernel = ExpSineSquared()

K = kernel(train_in) + 1e-4 * np.eye(train_len**2)

print(np.sort(np.linalg.eigh(K)[0]))
print()