Thanks to visit codestin.com
Credit goes to github.com

Skip to content

[MRG+1] Update list of scorers #9230

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 27, 2017
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 29 additions & 22 deletions doc/modules/model_evaluation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -54,33 +54,40 @@ the model and the data, like :func:`metrics.mean_squared_error`, are
available as neg_mean_squared_error which return the negated value
of the metric.


============================ ========================================= ==================================
Scoring Function Comment
============================ ========================================= ==================================
============================== ============================================= ==================================
Scoring Function Comment
============================== ============================================= ==================================
**Classification**
'accuracy' :func:`metrics.accuracy_score`
'average_precision' :func:`metrics.average_precision_score`
'f1' :func:`metrics.f1_score` for binary targets
'f1_micro' :func:`metrics.f1_score` micro-averaged
'f1_macro' :func:`metrics.f1_score` macro-averaged
'f1_weighted' :func:`metrics.f1_score` weighted average
'f1_samples' :func:`metrics.f1_score` by multilabel sample
'neg_log_loss' :func:`metrics.log_loss` requires ``predict_proba`` support
'precision' etc. :func:`metrics.precision_score` suffixes apply as with 'f1'
'recall' etc. :func:`metrics.recall_score` suffixes apply as with 'f1'
'roc_auc' :func:`metrics.roc_auc_score`
'accuracy' :func:`metrics.accuracy_score`
'average_precision' :func:`metrics.average_precision_score`
'f1' :func:`metrics.f1_score` for binary targets
'f1_micro' :func:`metrics.f1_score` micro-averaged
'f1_macro' :func:`metrics.f1_score` macro-averaged
'f1_weighted' :func:`metrics.f1_score` weighted average
'f1_samples' :func:`metrics.f1_score` by multilabel sample
'neg_log_loss' :func:`metrics.log_loss` requires ``predict_proba`` support
'precision' etc. :func:`metrics.precision_score` suffixes apply as with 'f1'
'recall' etc. :func:`metrics.recall_score` suffixes apply as with 'f1'
'roc_auc' :func:`metrics.roc_auc_score`

**Clustering**
'adjusted_rand_score' :func:`metrics.adjusted_rand_score`
'adjusted_mutual_info_score' :func:`metrics.adjusted_mutual_info_score`
'adjusted_rand_score' :func:`metrics.adjusted_rand_score`
'completeness_score' :func:`metrics.completeness_score`
'fowlkes_mallows_score' :func:`metrics.fowlkes_mallows_score`
'homogeneity_score' :func:`metrics.homogeneity_score`
'mutual_info_score' :func:`metrics.mutual_info_score`
'normalized_mutual_info_score' :func:`metrics.normalized_mutual_info_score`
'v_measure_score' :func:`metrics.v_measure_score`

**Regression**
'neg_mean_absolute_error' :func:`metrics.mean_absolute_error`
'neg_mean_squared_error' :func:`metrics.mean_squared_error`
'neg_mean_squared_log_error' :func:`metrics.mean_squared_log_error`
'neg_median_absolute_error' :func:`metrics.median_absolute_error`
'r2' :func:`metrics.r2_score`
============================ ========================================= ==================================
'neg_mean_absolute_error' :func:`metrics.mean_absolute_error`
'neg_mean_squared_error' :func:`metrics.mean_squared_error`
'neg_mean_squared_log_error' :func:`metrics.mean_squared_log_error`
'neg_median_absolute_error' :func:`metrics.median_absolute_error`
'r2' :func:`metrics.r2_score`
============================== ============================================= ==================================


Usage examples:

Expand Down