Make it easier to use user defined colormaps in matplotlib. Default colormaps are from NCL website.
Users can define a environmental variable CMAP_DIR pointing to the folder containing the self-defined rgb files.
Installation:
git clone https://github.com/hhuangwx/cmaps.git cd cmaps python setup.py install
Usage:
import matplotlib.pyplot as plt import cmaps import numpy as np x = y = np.arange(-3.0, 3.01, 0.05) X, Y = np.meshgrid(x, y) Z1 = plt.mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) plt.pcolormesh(X,Y,Z1,cmap=cmaps.WhiteBlueGreenYellowRed) plt.colorbar() plt.show()
List the colormaps using the code in the examples:
import cmaps
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc('text', usetex=False)
a = np.outer(np.arange(0, 1, 0.001), np.ones(10))
plt.figure(figsize=(20, 10))
plt.subplots_adjust(top=0.95, bottom=0.05, left=0.01, right=0.99)
cmap_d = cmaps.cmap_dict()
ncmaps = len(cmap_d.keys())
nrows = 4
for i, k in enumerate(cmap_d.keys()):
plt.subplot(nrows, ncmaps // nrows + 1, i + 1)
plt.axis('off')
plt.imshow(a, aspect='auto', cmap=cmap_d[k], origin='lower')
plt.title(k, rotation=90, fontsize=10)
plt.title(k, fontsize=10)
plt.savefig('colormaps.png', dpi=300)
