A tool for creating and managing labeled datasets for AI training.
- Create and manage topics (categories for classification)
- Label text payloads within topics
- Predict labels for new data using AI (Google Gemini)
- Fast, Unix-style CLI with streaming and batch processing support
# Install uv
curl -LsSf https://astral.sh/uv/install.sh | sh
# Install ailabel
uv tool install ailabel
# Set your gemini api key
export GOOGLE_API_KEY="AIz..."
# Example labelling
label "This product is amazing" --topic=sentiment --as=positive
label "This product is horrible" --topic=sentiment --as=negative
# Test the labelling
label -t sentiment "I'm not sure how i feel. i don't like it"
# negative# Install from PyPI using uv
uv pip install ailabel
# For development, install test dependencies
uv pip install "ailabel[test]"# Clone the repository
git clone https://github.com/thornewolf/ailabel.git
cd ailabel
# Install the package using uv
uv pip install -e .
# For development, install test dependencies
uv pip install -e ".[test]"# Create a new topic
label topics new sentiment
# List all topics
label topics list
# Get information about a topic
label topics info sentiment --labels
# Label a payload
label label "This product is amazing!" --topic=sentiment --as=positive
# Label from stdin
echo "This product is amazing!" | label label - --topic=sentiment --as=positive
# Interactive labeling
label label --topic=sentiment --interactive
# JSON output format
label label "Product was great" --topic=sentiment --as=positive --json
# Predict a label for a new payload
label predict "I love this product" --topic=sentiment
# Predict from stdin and get JSON output
echo "I love this product" | label predict - --topic=sentiment --json
# Process multiple items in batch mode
cat items.txt | label predict - --topic=lang-or-animal --batch
# Show debug information
label --debugCreate a .env.secret file with the following variables or export directly:
GOOGLE_API_KEY=your_gemini_api_key
# Run all tests
uv run pytest
# Run tests with coverage
uv run pytest --cov=ailabelMIT