The XeniumIO
package provides functions to import 10X Genomics Xenium
Analyzer data into R. The package is designed to work with the output of
the Xenium Analyzer, which is a software tool that processes Visium
spatial gene expression data. The package provides functions to import
the output of the Xenium Analyzer into R, and to create a TENxXenium
object that can be used with other Bioconductor packages.
The 10X suite of packages support multiple file formats. The following table lists the supported file formats and the corresponding classes that are imported into R.
Extension | Class | Imported as |
---|---|---|
.h5 | TENxH5 | SingleCellExperiment w/ TENxMatrix |
.mtx / .mtx.gz | TENxMTX | SummarizedExperiment w/ dgCMatrix |
.tar.gz | TENxFileList | SingleCellExperiment w/ dgCMatrix |
peak_annotation.tsv | TENxPeaks | GRanges |
fragments.tsv.gz | TENxFragments | RaggedExperiment |
.tsv / .tsv.gz | TENxTSV | tibble |
Extension | Class | Imported as |
---|---|---|
spatial.tar.gz | TENxSpatialList | DataFrame list * |
.parquet | TENxSpatialParquet | tibble * |
Extension | Class | Imported as |
---|---|---|
.zarr.zip | TENxZarr | (TBD) |
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")))
BiocManager::install("XeniumIO")
library(XeniumIO)
The TENxXenium
class has a metadata
slot for the experiment.xenium
file. The resources
slot is a TENxFileList
or TENxH5
object
containing the cell feature matrix. The coordNames
slot is a vector
specifying the names of the columns in the spatial data containing the
spatial coordinates. The sampleId
slot is a scalar specifying the
sample identifier.
TENxXenium(
resources = "path/to/matrix/folder/or/file",
xeniumOut = "path/to/xeniumOut/folder",
sample_id = "sample01",
format = c("mtx", "h5"),
boundaries_format = c("parquet", "csv.gz"),
spatialCoordsNames = c("x_centroid", "y_centroid"),
...
)
The format
argument specifies the format of the resources
object,
either “mtx” or “h5”. The boundaries_format
allows the user to choose
whether to read in the data using the parquet
or csv.gz
format.
Note that the xeniumOut
unzipped folder must contain the following
files:
*outs
├── cell_feature_matrix.h5
├── cell_feature_matrix.tar.gz
| ├── barcodes.tsv*
| ├── features.tsv*
| └── matrix.mtx*
├── cell_feature_matrix.zarr.zip
├── experiment.xenium
├── cells.csv.gz
├── cells.parquet
├── cells.zarr.zip
[...]
Note that currently the zarr
format is not supported as the
infrastructure is currently under development.
The resources
slot should either be the TENxFileList
from the mtx
format or a TENxH5
instance from an h5
file. The boundaries can
either be a TENxSpatialParquet
instance or a TENxSpatialCSV
. These
classes are automatically instantiated by the constructor function.
showClass("TENxXenium")
#> Class "TENxXenium" [package "XeniumIO"]
#>
#> Slots:
#>
#> Name: resources boundaries coordNames
#> Class: TENxFileList_OR_TENxH5 TENxSpatialParquet_OR_TENxSpatialCSV character
#>
#> Name: sampleId colData metadata
#> Class: character TENxSpatialParquet XeniumFile
The import
method for a TENxXenium
instance returns a
SpatialExperiment
class object. Dispatch is only done on the con
argument. See ?BiocIO::import
for details on the generic. The import
function call is meant to be a simple call without much input. For more
details in the package, see ?TENxXenium
.
getMethod("import", c(con = "TENxXenium"))
#> Method Definition:
#>
#> function (con, format, text, ...)
#> {
#> sce <- import(con@resources, ...)
#> metadata <- import(con@metadata)
#> coldata <- import(con@colData)
#> SpatialExperiment::SpatialExperiment(assays = list(counts = assay(sce)),
#> rowData = rowData(sce), mainExpName = mainExpName(sce),
#> altExps = altExps(sce), sample_id = con@sampleId, colData = as(coldata,
#> "DataFrame"), spatialCoordsNames = con@coordNames,
#> metadata = list(experiment.xenium = metadata, polygons = import(con@boundaries)))
#> }
#> <bytecode: 0x622eb1e584c8>
#> <environment: namespace:XeniumIO>
#>
#> Signatures:
#> con format text
#> target "TENxXenium" "ANY" "ANY"
#> defined "TENxXenium" "ANY" "ANY"
The following code snippet demonstrates how to import a Xenium Analyzer
output into R. The TENxXenium
object is created by specifying the path
to the xeniumOut
folder. The TENxXenium
object is then imported into
R using the import
method for the TENxXenium
class.
First, we cache the ~12 MB file to avoid downloading it multiple times (via BiocFileCache).
zipfile <- paste0(
"https://mghp.osn.xsede.org/bir190004-bucket01/BiocXenDemo/",
"Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs.zip"
)
destfile <- XeniumIO:::.cache_url_file(zipfile)
We then create an output folder for the contents of the zipped file. We
use the same name as the zip file but without the extension (with
tools::file_path_sans_ext
).
outfold <- file.path(
tempdir(), tools::file_path_sans_ext(basename(zipfile))
)
if (!dir.exists(outfold))
dir.create(outfold, recursive = TRUE)
We now unzip the file and use the outfold
as the exdir
argument to
unzip
. The outfold
variable and folder will be used as the
xeniumOut
argument in the TENxXenium
constructor. Note that we use
the ref = "Gene Expression"
argument in the import
method to pass
down to the internal splitAltExps
function call. This will set the
mainExpName
in the SpatialExperiment
object.
unzip(
zipfile = destfile, exdir = outfold, overwrite = FALSE
)
TENxXenium(xeniumOut = outfold) |>
import(ref = "Gene Expression")
#> class: SpatialExperiment
#> dim: 5006 36
#> metadata(2): experiment.xenium polygons
#> assays(1): counts
#> rownames(5006): ENSMUSG00000052595 ENSMUSG00000030111 ... ENSMUSG00000055670 ENSMUSG00000027596
#> rowData names(3): ID Symbol Type
#> colnames(36): aaamobki-1 aaclkaod-1 ... olbjkpjc-1 omjmdimk-1
#> colData names(13): cell_id transcript_counts ... segmentation_method sample_id
#> reducedDimNames(0):
#> mainExpName: Gene Expression
#> altExpNames(5): Deprecated Codeword Genomic Control Negative Control Codeword Negative Control Probe Unassigned Codeword
#> spatialCoords names(2) : x_centroid y_centroid
#> imgData names(0):
Note that you may also use the swapAltExp
function to set a
mainExpName
in the SpatialExperiment
but this is not recommended.
The operation returns a SingleCellExperiment
which has to be coerced
back into a SpatialExperiment
. The coercion also loses some metadata
information particularly the spatialCoords
.
TENxXenium(xeniumOut = outfold) |>
import() |>
swapAltExp(name = "Gene Expression") |>
as("SpatialExperiment")
#> class: SpatialExperiment
#> dim: 5006 36
#> metadata(1): TENxFileList
#> assays(1): counts
#> rownames(5006): ENSMUSG00000052595 ENSMUSG00000030111 ... ENSMUSG00000055670 ENSMUSG00000027596
#> rowData names(3): ID Symbol Type
#> colnames(36): aaamobki-1 aaclkaod-1 ... olbjkpjc-1 omjmdimk-1
#> colData names(13): cell_id transcript_counts ... segmentation_method sample_id
#> reducedDimNames(0):
#> mainExpName: Gene Expression
#> altExpNames(5): Genomic Control Negative Control Codeword Negative Control Probe Unassigned Codeword Deprecated Codeword
#> spatialCoords names(0) :
#> imgData names(0):
The dataset was obtained from the 10X Genomics website under the X0A
v3.0
section
and is a subset of the Xenium Prime 5K Mouse Pan Tissue & Pathways
Panel. The link to the data can be seen as the url
input above and
shown below for completeness.
Click to expand sessionInfo()
R version 4.5.0 Patched (2025-04-15 r88148)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] BiocStyle_2.37.0 XeniumIO_1.1.1 TENxIO_1.11.1 SingleCellExperiment_1.31.0
[5] SummarizedExperiment_1.39.0 Biobase_2.69.0 GenomicRanges_1.61.0 GenomeInfoDb_1.45.3
[9] IRanges_2.43.0 S4Vectors_0.47.0 BiocGenerics_0.55.0 generics_0.1.3
[13] MatrixGenerics_1.21.0 matrixStats_1.5.0 colorout_1.3-2
loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 dplyr_1.1.4 blob_1.2.4 arrow_19.0.1.1 filelock_1.0.3
[6] fastmap_1.2.0 BiocFileCache_2.99.0 digest_0.6.37 lifecycle_1.0.4 RSQLite_2.3.9
[11] magrittr_2.0.3 compiler_4.5.0 rlang_1.1.6 tools_4.5.0 utf8_1.2.4
[16] yaml_2.3.10 knitr_1.50 VisiumIO_1.5.1 askpass_1.2.1 S4Arrays_1.9.0
[21] bit_4.6.0 curl_6.2.2 DelayedArray_0.35.1 abind_1.4-8 rsconnect_1.3.4
[26] withr_3.0.2 purrr_1.0.4 sys_3.4.3 grid_4.5.0 cli_3.6.5
[31] rmarkdown_2.29 crayon_1.5.3 rstudioapi_0.17.1 httr_1.4.7 tzdb_0.5.0
[36] rjson_0.2.23 BiocBaseUtils_1.11.0 DBI_1.2.3 cachem_1.1.0 assertthat_0.2.1
[41] parallel_4.5.0 BiocManager_1.30.25 XVector_0.49.0 vctrs_0.6.5 Matrix_1.7-3
[46] jsonlite_2.0.0 hms_1.1.3 bit64_4.6.0-1 archive_1.1.12 magick_2.8.6
[51] credentials_2.0.2 glue_1.8.0 codetools_0.2-20 BiocIO_1.19.0 UCSC.utils_1.5.0
[56] tibble_3.2.1 pillar_1.10.2 rappdirs_0.3.3 htmltools_0.5.8.1 openssl_2.3.2
[61] R6_2.6.1 dbplyr_2.5.0 httr2_1.1.2 gert_2.1.5 vroom_1.6.5
[66] evaluate_1.0.3 lattice_0.22-7 readr_2.1.5 SpatialExperiment_1.19.0 memoise_2.0.1
[71] Rcpp_1.0.14 SparseArray_1.9.0 whisker_0.4.1 xfun_0.52 pkgconfig_2.0.3